

- **Operating Instructions**
- Manuel d'utilisation

Typ 8049 IPC

Version: 09/2024

8049-IPC - Anleitung - Operating Instructions -Manuel.docx Art.-Nr: 123 8049

Bunsenstrasse 38 Tel: (0841) 9654-0 www.schubert-salzer.com D-85053 Ingolstadt Fax: (0841) 9654-590

Inhalt/Content/Sommaire

1		Betriebsanleitung (deutsch)	5
	1.1	Allgemeines	5
	1.2	Anbau	5
	1.3	Bestimmungsgemäßer Gebrauch	5
	1.4	Gesetze und Bestimmungen	5
	1.5	Allgemeine Sicherheitshinweise	5
	1.6	Funktionsweise	6
	1.7	Technische Daten	7
	1.8	Zuluft	8
	1.9	Elektrische Anschlüsse	8
	1.10	Bedienung	12
	1.11	Erstinbetriebnahme 8049 IPC	14
	1.12	Menüführung Hauptmenü	15
	1.13	Menüführung IPC	16
	1.14	Menüführung 8049-4	28
	1.15	Menüführung Allgemein	35
	1.16	Weitere Betriebsmodi	41
	1.17	IPC Alarme	43
	1.18	Selbstabgleich	45
	1.19	Konfigurierung mit PC-Software DeviceConfig	46
	1.20	Fehlermeldungen	47
	1.21	Störungsbeseitigung	48
	1.22	Einstellen der Regelparameter	49
	1.23	Montage bei Linearantrieben	56
	1.24	Montage bei Schwenkantrieben	58
	1.25	Wartung und Instandhaltung	59
	1.26	Entsorgung	60
	1.27	Abmessungen und Gewichte	60
2	GE	Operating Instructions (English)	61
	2.1	General	61
	2.2	Adjustment	61
	2.3	Intended use	61
	2.4	Laws and regulations	61
	2.5	General safety instructions	61
	2.6	Functionality	62
	2.7	Technical data	63
	2.8	Air supply	64

2.9	Electrical connections	64
2.10	Operation	68
2.11	First commissioning 8049 IPC	70
2.12	Main menu navigation	71
2.13	Menu navigation IPC	72
2.14	Menu navigation 8049-4	83
2.15	General menu navigation	90
2.16	Other operating modes	96
2.17	IPC Alarm	97
2.18	Self-adaption	100
2.19	Configuration with PC software DeviceConfig	101
2.20	Error messages:	102
2.21	Troubleshooting	103
2.22	Adjusting the control parameters	104
2.23	Installation of linear actuators	111
2.24	Installation of rotary actuators	112
2.25	Maintenance and repair	113
2.26	Disposal	114
2.27	Dimensions and weights	114
з 🤇	D Instructions d'utilisation (en français)	115
3.1	Généralités	115
3.1 3.2	Généralités Montage	115 115
3.1 3.2 3.3	Généralités Montage Utilisation conforme à l'usage prévu	115 115 115
3.1 3.2 3.3 3.4	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales	115 115 115 115
3.1 3.2 3.3 3.4 3.5	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité	115 115 115 115 115 115
3.1 3.2 3.3 3.4 3.5 3.6	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement	115 115 115 115 115 115 116
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques	115 115 115 115 115 116 117
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air	115 115 115 115 115 115 116 117 118
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques	115 115 115 115 115 115 116 117 118 118
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation	115 115 115 115 115 116 117 118 118 122
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC	115 115 115 115 115 116 117 118 118 122 124
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal	115 115 115 115 115 116 117 118 118 122 124 125
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal Guidage par menus – IPC	115 115 115 115 115 116 117 118 118 122 124 125 126
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal Guidage par menus – IPC	115 115 115 115 115 116 117 118 118 122 124 125 126 137
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal Guidage par menus 8049-4 Guidage par menus 8049-4	115 115 115 115 115 116 117 118 118 122 124 125 126 137 144
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal Guidage par menus – IPC Guidage par menus 8049-4 Guidage par menus Généralités Autres modes de fonctionnement	115 115 115 115 115 116 117 118 118 122 124 125 126 137 144 150
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17	Généralités Montage Utilisation conforme à l'usage prévu Lois et dispositions légales Consignes générales de sécurité Fonctionnement Caractéristiques techniques Arrivée d'air Raccordements électriques Utilisation Première mise en service du 8049 IPC Guidage par menus – Menu principal Guidage par menus – IPC Guidage par menus 8049-4 Guidage par menus Généralités Autres modes de fonctionnement Alarmes de l'IPC	115 115 115 115 115 116 117 118 112 124 125 126 137 144 150 153
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	GénéralitésMontageUtilisation conforme à l'usage prévuLois et dispositions légalesConsignes générales de sécuritéFonctionnementCaractéristiques techniquesArrivée d'airRaccordements électriquesUtilisationPremière mise en service du 8049 IPCGuidage par menus – Menu principalGuidage par menus S049-4Guidage par menus GénéralitésAutres modes de fonctionnementAlarmes de l'IPCAdaptation automatique	115 115 115 115 115 116 117 118 117 118 122 124 125 126 137 144 150 153 155
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19	GénéralitésMontageUtilisation conforme à l'usage prévuLois et dispositions légalesConsignes générales de sécuritéFonctionnementCaractéristiques techniquesArrivée d'airRaccordements électriquesUtilisationPremière mise en service du 8049 IPCGuidage par menus – Menu principalGuidage par menus S049-4Guidage par menus GénéralitésAutres modes de fonctionnementAlarmes de l'IPCAdaptation automatiqueConfiguration avec le logiciel sur PC DeviceConfig	115 115 115 115 115 116 117 118 117 118 122 124 125 126 137 144 150 153 155

3.21	Élimination des défauts	158
3.22	Réglage des paramètres de régulation	159
3.23	Montage pour les actionneurs linéaires	166
3.24	Montage pour les actionneurs pivotants	168
3.25	Maintenance et entretien	170
3.26	Élimination	170
3.27	Dimensions et poids	170

1 Detriebsanleitung (deutsch)

1.1 Allgemeines

Neben den Hinweisen in dieser Druckschrift müssen die allgemeingültigen Sicherheits- und Unfallverhütungsvorschriften berücksichtigt werden.

Sollten die in dieser Druckschrift enthaltenen Informationen in irgendeinem Fall nicht ausreichen, so steht Ihnen unser Service gerne mit weitergehenden Auskünften zur Verfügung. Vor der Installation und Inbetriebnahme lesen Sie bitte diese Druckschrift sorgfältig durch.

1.2 **Anbau**

Der Stellungsregler kann auf jedes pneumatische Stellventil mit Hüben von 3 bis 28 mm (optional 50mm) aufgebaut werden ("Top-Mounted").

Um den Anbau an das Ventil zu vereinfachen, stehen verschiedene Anbausätze zur Verfügung, die die erforderlichen Anbauteile für das Verbinden des Ventilantriebs und des Stellungsreglers, eine Rückführ-Taststange für den Ventilhub und bei Bedarf eine optische Ventilpositionsanzeige umfassen.

Da die Adaption des Stellungsreglers an den Ventilhub automatisch erfolgt, wird ein Standard- Anbausatz verwendet, der jedoch antriebsseitig den mechanischen Gegebenheiten des Ventils bei Bedarf angepasst werden kann. Alle Parameter des 8049 IPC sowie die wichtigsten Parameter des 8049-4 können über ein Menü direkt am Gerät eingestellt werden. Die Einstellung aller Parameter mittels der frei verfügbaren Konfigurationssoftware "DeviceConfig" ist ebenfalls möglich.

1.3 Bestimmungsgemäßer Gebrauch

Der Stellungsregler mit integriertem Prozessregler Typ 8049 IPC ist ein Regler zum Positionieren von pneumatisch gesteuerten Stellgliedern. Er ist vorgesehen zum Anbau an Linear- und Schwenkantriebe gemäß den Anweisungen in dieser Betriebsanleitung.

Das Gerät darf nur für die in dieser Betriebsanleitung bzw. in den Datenblättern beschriebenen Anwendungsfälle eingesetzt werden. Jeder andere Gebrauch gilt als bestimmungswidrig.

1.4 Gesetze und Bestimmungen

Bei Anschluss, Montage und Inbetriebnahme, sind die im jeweiligen Land gültigen gesetzlichen Bestimmungen einzuhalten.

Dies sind zum Beispiel:

Die Betriebssicherheitsverordnung (Deutschland)

1.5 Allgemeine Sicherheitshinweise

Das Gerät darf nur von Fachpersonal, dass mit der Montage, der Inbetriebnahme und dem Betrieb dieses Produktes vertraut ist, montiert und in Betrieb genommen werden.

Fachpersonal im Sinne dieser Einbau- und Bedienungsanleitung sind Personen, die auf Grund ihrer fachlichen Ausbildung, ihrer Kenntnisse und Erfahrungen sowie ihrer Kenntnisse der einschlägigen Normen die ihnen übertragenen Arbeiten beurteilen und mögliche Gefahren erkennen können.

Gefährdungen, die am Stellventil vom Durchflussmedium und dem Betriebsdruck sowie dem Stelldruck und von beweglichen Teilen ausgehen können, sind durch geeignete Maßnahmen zu verhindern.

Falls sich durch die Höhe des Zuluftdrucks im pneumatischen Antrieb unzulässige Bewegungen oder Kräfte ergeben, muss der Zuluftdruck durch eine geeignete Reduzierstation begrenzt werden.

Die Abluftöffnung darf bauseits nicht verschlossen werden.

Sachgemäßer Transport und fachgerechte Lagerung des Gerätes werden vorausgesetzt.

1.6 Funktionsweise

Der integrierte Prozessregler Typ 8049 IPC basiert auf dem Stellungsreglers Typ 8049-4 Version 6 und kann auf jedes pneumatische Stellventil mit Hüben von 3,5 bis 50 mm oder an Drehantriebe bis 180° Drehwinkel aufgebaut werden ("Top-Mounted"). Die Funktion als integrierter Prozessregler kann deaktiviert werden, sodass der Typ 8049 IPC als Standard-Stellungsregler Typ 8049-4 arbeitet (wo notwendig, wird in dieser Anleitung zwischen beiden Typen unterschieden).

Mit dem Prozessregler Typ 8049 IPC können lokale Regelaufgaben gelöst werden, der Sensor für die Prozessgröße wird hierfür direkt am Prozessregler angeschlossen.

Der Regler arbeitet als PID-Regler mit folgender Übertragungsgleichung:

$$y - y_0 = \frac{100\%}{X_P[\%]} \cdot \left[(w - x) + \frac{1}{T_N} \int (w - x) dt + T_V \frac{d(w - x)}{dt} \right]$$

Hierbei sin	id:	
Größe	Bedeutung	Bemerkung
W	Sollwert	
Х	Istwert	
CP	Verstärkung	Proportional (P) – Anteil der Reglerfunktion, im weiteren Verlauf mit Kp bezeichnet
Y ₀	Arbeitspunkt	Anwendung nur bei P- oder PD-Reglern, um die Regelabweichung klein zu halten. Der Arbeitspunkt ist das Stellsignal, das der Regler bei einer Regelabweichung von Null ausgibt.
T _N	Nachstellzeit	Integral (I) – Anteil der Reglerfunktion
Tv	Vorhaltzeit	Differential (D) – Anteil der Reglerfunktion

1.7 Technische Daten

Nennhub	3 - 28 / 3 - 50 mm
Bürdenspannung	2,5 V (125Ω@20mA)
Zul. Umgebungstemperatur	-10 bis +75°C
Regelgröße (Istwert)	0/4 - 20 mA, Pt100 (2 oder 3-Leiter)
Führungsgröße (Sollwert)	über Tastatur oder
	0/4 - 20 mA; 0/2 - 10 V
Regelverhalten	P (mit Arbeitspunkt y0)
	PD (mit Arbeitspunkt y0)
	PI
	PID
Genauigkeit	≤ 0,5% vom Endwert
Alarmausgang	absolut direkt/invers,
	relativ direkt/invers,
	Band direkt/invers
Hilfsenergie, elektrisch	24 VDC max. 10 W
Anpassung von Hub und Nullpunkt	selbstlernend
Konfiguration	Direkt am Display oder über PC-Software
Hilfsenergie, pneumatisch	max. 6 bar
Ungedrosselte Luftleistung*	40 NI/min
Stationärer Luftverbrauch	< 0,06 NI/min
Systemleckage	< 0,01 NI/min
Luftqualität gemäß ISO 8573-1:	
max. Feststoffgröße und -dichte	Klasse 5
Ölgehalt	Klasse 4
Drucktaupunkt	Klasse 3
	min. 20K (36°F) unter Umgebungstemperatur
Betätigungsgas	Druckluft oder nicht brennbare Gase (Stickstoff, CO2,)
Anbau an Stellgerät	Uber standardisierte Anbausätze (auch mit optischer
	Hubanzeige)
Druckanschluss	G 1/8"
Max. Anschlussquerschnitt	1,5mm ²
Schutzart nach EN 60529	IP 65

*bei 5 bar Zuluftdruck

1.8 Zuluft

Die Versorgungsluft wird mit dem Eingang "P" verbunden (G1/8").

Sie darf einen Druck von 6 bar <u>nicht</u> übersteigen, da sonst mit einer Fehlfunktion zu rechnen ist.

Luftqualität:

Nicht geölte Industrieluft, Feststoffgehalt < 30µ, Drucktaupunkt 20 K unter der niedrigsten Umgebungstemperatur.

1.9 Elektrische Anschlüsse

Der elektrische Anschluss darf nur durch qualifiziertes Personal erfolgen. Beachten Sie unbedingt bei Montage, Inbetriebnahme und Betrieb der Geräte die entsprechenden nationalen Sicherheitsvorschriften (z. B. VDE 0100). Alle Arbeiten dürfen nur im spannungslosen Zustand erfolgen.

Bei Nichtbeachten der entsprechenden Vorschriften können schwere Körperverletzungen und/oder Sachschäden auftreten.

Der Stellungsregler benötigt eine externe Spannungsversorgung (24 VDC, gesiebt, ripple 10% max.). Die durchschnittliche Stromaufnahme beträgt maximal 300mA (für doppelt wirkend 600mA). Da im Einschaltmoment höhere Spitzenströme fließen, ist eine Absicherung mit mindestens 1A (doppeltwirkend 2A) träge vorzusehen.

Der Anschluss der Spannungsversorgung sollte über ein, von den Signalleitungen, getrenntes zweites Kabel erfolgen.

Nach dem Öffnen des Deckels des Stellungsreglers sind die Schraubklemmen des Klemmenblock A (5) und Klemmenblock B (1) für die einzelnen Anschlüsse zugänglich.

Der maximale Anschlussquerschnitt beträgt 1,5 mm²

Nicht verwendete Kabelverschraubungen sind unbedingt mit einem geeigneten Verschlussstopfen abzudichten um die Schutzart (IP65) zu erhalten.

Der Stellungsregler muss geerdet werden. Eine Erdungsschraube befindet sich außen am Gehäuse und auf der Platine in der Nähe der Anschlussklemmen.

Zusätzlich sind geschirmte Kabel zu verwenden.

1.9.1 Anschlussbeispiele

Pt100 2-Leiter Messung

Pt100 3-Leiter Messung

empfohlen bei längeren Distanzen

Stellungsregler 8049 IPC

Stellungsregler 8049 IPC

mA-Messaufnehmer

Stellungsregler 8049 IPC

mA-Messumformer in 2-Leiter Ausführung (mit interner Geberspeisung)

IPC Mode = IPC OFF oder IPC Mode = LCD Only (Arbeitsweise wie 8049-4)

7

#

Stellungsregler 8049 IPC

1.10 Bedienung

1.10.1 Allgemeine Hinweise zur Menübedienung

Der Prozessregler Typ 8049 IPC und Stellungsregler 8049-4 können über ein Menü am Display eingestellt und parametriert werden. Das Menü wird durch dauerhaftes Drücken der Taste "SEL" für ca. 3 Sekunden aufgerufen, die Navigation im Menü erfolgt über die Folientastatur (bei geöffnetem Deckel alternativ über die Drucktaster im Reglerinneren) mit drei Bedienelementen:

2

3

Mit der Taste "IN" wird im Menü nach oben navigiert oder ein zu ändernder Wert inkrementiert. Ein dauerhaftes Drücken der Taste beschleunigt das Inkrementieren.

Mit der Taste "OUT" wird im Menü nach unten navigiert oder ein zu ändernder Wert dekrementiert. Ein dauerhaftes Drücken der Taste beschleunigt das Dekrementieren.

Mit der Taste "SEL" wird eine Aktion (Sprung in ein Untermenü, zurück in ein übergeordnetes Menü oder Setzen einer Einstellung) passend zur ausgewählten Menüzeile ausgeführt.

Ein Menü wird regulär über die Menüzeile "- back - " verlassen, wodurch zum übergeordneten Menü zurückgesprungen wird (beim Verlassen des Hauptmenüs wird zur Hauptanzeige zurückgewechselt). Inaktivität bei geöffnetem Menü (kein Drücken der Bedienelemente IN, OUT oder SEL für 20 Minuten) oder gleichzeitiges Betätigen von IN und OUT für mindestens 0,5 Sekunden führen zu einem Verlassen des Menüs direkt zurück zur Hauptanzeige.

Die Menüs *IPC param* und *Parameter* sind standardmäßig passwortgeschützt. Der Passwortschutz kann in der Konfigurationssoftware DeviceConfig deaktiviert werden.

Geänderte Werte und Einstellungen werden nur dann abgespeichert, wenn das entsprechende Menü über die Menüzeile "- back - " verlassen wird.

1.10.2 Aufbau einer Menüseite

Eine Menüseite besteht aus einem Header (1), einem Seitenindex (2) sowie den Menüeinträgen (3). Besteht ein Menü aus mehr als drei Einträgen, wird dies durch einen Balken, der die Position des aktuell ausgewählten Bereichs im Menü darstellt, angezeigt (4).

Die Betätigung der "IN" Taste beim ersten Menüeintrag führt zum Überschlag des Menüs und der letzte Menüeintrag wird angezeigt.

Die Betätigung der "OUT" Taste beim letzten Menüeintrag führt zum Überschlag des Menüs und der erste Menüeintrag wird angezeigt.

Hinweis: Zur besseren Übersicht wird in den Kapiteln zur Beschreibung der einzelnen Menüseiten immer das komplette Menü dargestellt, auch wenn dieses mehr als drei Einträge besitzt. Auf die Darstellung des Balkens wird verzichtet.

1.10.3 Displayinhalt 8049 4

Standardanzeige:

Die Standardanzeige ist immer aktiv, wenn sich der Prozessregler 8049 IPC im Modus "IPC OFF" oder "LCD only" befindet, kein Fehler vorliegt und gerade keine Einstellungen vorgenommen werden. Das Gerät arbeitet also als reiner Stellungsregler 8049-4.

Die aktuelle Position in Prozent wird groß angezeigt (1), darunter ist der aktuelle Sollwert der Ventilposition dargestellt (2). Die oberste Zeile beschreibt den Displayinhalt (3).

Anzeige der Fehlerzustände:

Liegt ein Fehler am Gerät vor wird dies mit dem Fehlercode signalisiert (2). In der ersten Zeile befindet sich eine kurze Beschreibung des Fehlercodes (1) und in der dritten Zeile zusätzliche Informationen. Für eine detaillierte Beschreibung der Fehlercodes siehe Abschnitt 1.20

1.10.4 Displayinhalt 8049 IPC

Standardanzeige:

Die Standardanzeige ist immer aktiv, wenn sich der Prozessregler 8049 IPC im Modus "IPC ON" befindet, kein Fehler vorliegt und gerade keine Einstellungen vorgenommen werden.

Der aktuelle Istwert (X) des Sensors in Einheiten wird groß über das ganze Display dargestellt. (1) Der aktuelle Sollwert (W) in Einheiten befindet sich rechts oben. (2)

Die Skalierung des Messwerts und die Anzahl der Nachkommastellen ist im Menü einstellbar.

Während der manuellen Sollwertvorgabe (1.16.2) wird der Stellwert des Stellungsreglers an Position 2 angezeigt.

Ein aktiver IPC Alarm (1.17) wird durch die blinkende Anzeige der Glocke (3) symbolisiert.

Die Anzeige von Fehlermeldungen ist identisch zum 8049-4.

1.11 Erstinbetriebnahme 8049 IPC

Um die sichere und korrekte Funktionsweise des 8049 IPC bei der Erstinbetriebnahme sicherzustellen, müssen mindestens die folgenden Parameter eingestellt werden:

- Art des Sollwertsignals (siehe Abschnitt 1.13.2)
- Art der Istwerterfassung (siehe Abschnitt 1.13.3)
- Wertebereich der Istwerterfassung (siehe Abschnitt 1.13.4)
- Wirkrichtung des Regelsignals (siehe Abschnitt 1.13.11)
- IPC mode auf ON ändern (siehe Abschnitt 1.13.5)

Der IPC mode darf erst am Ende der Parametereinstellungen auf ON gesetzt werden, da hiermit die Regelung der Prozessgröße beginnt.

1.12 Menüführung Hauptmenü

1.12.1 Menu main - Hauptmenü

Menu main	0
IPC param	
Parameter	
Info	
Error info	
Settings	
- back -	

Eintrag	Beschreibung
IPC param	Untermenü zur Einstellung aller Parameter des 8049 IPC
	passwortgeschützt (Standardpasswort: 1)
Parameter	Untermenü zur Einstellung aller Parameter des Stellungsreglers Typ 8049-4
	passwortgeschützt (Standardpasswort: 1)
Info	Untermenü mit Informationen zum Selbstabgleich, Firmwareversion, Seriennummer und
	Betriebsstunden
Error info	Untermenü mit Informationen zu aufgetretenen Fehlern sowie Wartungsinformationen
Settings	Untermenü zur Änderung des Passworts, zur Ausführung des Werksresets und Start
	des Selbstabgleichs
- back -	Menüführung verlassen

1.13 Menüführung IPC

IPC param – Parametereinstellung IPC

Im Menü *IPC param* und den zugehörigen Untermenüs werden alle Einstellungen für den integrierten Prozessregler **Typ 8049 IPC** vorgenommen.

IPC param	34
PID	
Setpoint	
Sens signal	
Sens scale	
IPC mode	
Filter	
Step func	
Alarm	
Cycle time	
Digits	
Work dir	
Err action	
SW version	
- back -	

Eintrag	Beschreibung
PID	Untermenü zur Einstellung der PID Parameter
Setpoint	Untermenü zur Einstellung der Sollwertquelle des IPC
Sens signal	Untermenü zur Einstellung des Sensor-Eingangs
Sens scale	Untermenü zur Eingabe des Wertebereichs des IPC
IPC mode	Untermenü zum Ein- bzw. Ausschalten des IPC
Filter	Untermenü zur Aktivierung/Deaktivierung des zusätzlichen Filters für den Istwert des
	IPC
Step func	Untermenü zur Einstellung und Ausführung der Sprungfunktion (z.B. Ermittlung der
	Streckenverstärkung Ks, siehe Abschnitt 1.22.5)
Alarm	Untermenü zur Einstellung der Alarme des IPC
Cycle time	Untermenü zur Einstellung der Zykluszeit des IPC
Digits	Untermenü zur Einstellung der verwendeten Nachkommastellen
Work dir	Untermenü zur Einstellung der Wirkrichtung des IPC
Err actions	Untermenü zur Einstellung des Verhaltens des IPC bei diversen Fehlern
SW version	Untermenü zur Anzeige der Firmwareversion des IPC
- back -	Rückkehr in das Menü Menu main

1.13.1 **PID – Einstellung der Regelparameter**

PID	40
Кр	
Tn	
Td	
YO	
- back -	

Eintrag	Beschreibung
Кр	Untermenü zur Einstellung der Proportionalverstärkung
Tn	Untermenü zur Einstellung der Nachstellzeit
Td	Untermenü zur Einstellung der Vorhaltzeit
Y0	Untermenü zur Einstellung des Arbeitspunkts (bei P- oder PD-Regler)
- back -	Rückkehr in das Menü IPC Param

1.13.1.1 Set Kp

Menü zur Einstellung der Proportionalverstärkung Kp

1.0	Set	Кр	41	L
- back -		1.0		

Wertebereich 1.0 – 100.0 Standardwert 1.0

Eine Änderung des Wertes von Kp wird sofort wirksam, eine Abspeicherung erfolgt erst dann, wenn das Menü über "- back - " verlassen wird.

1.13.1.2 Param Tn

Menü zur Aktivierung/Deaktivierung des Integral-Anteils des Reglers und Einstellung der Nachstellzeit.

Param Tn	42	Set Tn	44
o Active			
• Inactive		3.0s	
– back –		- back -	

Eintrag	Beschreibung
Active	I-Anteil ist aktiviert, Aufruf des Untermenüs zur Einstellung der Nachstellzeit Tn
Inactive	I-Anteil ist deaktiviert
- back -	Rückkehr in das Menü PID

Wertebereich	1.0s – 4999.0s
Standardwert	3.0s

1.13.1.3 Param Td

Menü zur Aktivierung/Deaktivierung des Differential-Anteils des Reglers und Einstellung der Vorhaltzeit.

Param Td	43		Set	Tn	45
o Active		├			
• Inactive				3.0s	
– back –			-	back -	

Eintrag	Beschreibung
Active	D-Anteil ist aktiviert, Aufruf des Untermenüs zur Einstellung der Vorhaltzeit Td
Inactive	D-Anteil ist deaktiviert
- back -	Rückkehr in das Menü PID

Wertebereich	1.0s – 2999.0s
Standardwert	3.0s

Eine Änderung des Wertes von Td wird sofort wirksam, eine Abspeicherung erfolgt erst dann, wenn das Menü über "- back - " verlassen wird.

1.13.1.4 Set Y0

Menü zur Einstellung des Arbeitspunkts Y0 (Anwendung nur bei P- und PD-Regler)

Set	Y0	46
	50.0%	
Ι	back -	

Wertebereich 0.0% – 100.0% Standardwert 50.0%

Eine Änderung des Wertes von Y0 wird sofort wirksam, eine Abspeicherung erfolgt erst dann, wenn das Menü über "- back - " verlassen wird.

1.13.2 Setpoint – Sollwertquelle / Einstellung des internen Sollwertes

Menü zur Einstellung der Art des Sollwertsignals.

Wird der interne Sollwert verwendet, ist dieser in Einheiten der Prozessgröße anzugeben (siehe Abschnitt 1.13.4).

Setpoint	54		Intern set	55
o Internal]────►	Incern bee	55
oExt 4-20mA			0.0	
oExt 0-20mA			0.0	
- back -			– back –	

Eintrag*	Beschreibung
Internal	Sollwertvorgabe intern, Aufruf des Untermenüs zur Einstellung des internen Sollwerts
Ext 4-20mA	Sollwertvorgabe extern, Signalbereich 4-20mA, Anschlussklemmen 6 und 7
Ext 0-20mA	Sollwertvorgabe extern, Signalbereich 0-20mA, Anschlussklemmen 6 und 7
- back -	Rückkehr in das Menü IPC Param

*Bei Verwendung eines Stellungsreglers 8049-4 mit Spannungseingang zur Sollwertvorgabe wird dies im Menü entsprechend dargestellt (Internal/ext. 2-10 V/ext. 0-10 V)

Intern set: - Interne Sollwertvorgabe direkt am IPC

Wertebereich Value min bis Value max (siehe Abschnitt 1.13.4) Standardwert (Value max – Value min)/2

Eine Änderung des Wertes des internen Sollwertes wird sofssort wirksam, eine Abspeicherung erfolgt erst dann, wenn das Menü über "- back - " verlassen wird.

1.13.3 Sensor sig – Auswahl des Istwertsignals

Sensor sig	36
o 4−20 mA	
0 0−20 mA	
0 PT100	
- back -	

Eintrag	Beschreibung
4-20 mA	Istwerterfassung mittels Stromsignal, Signalbereich 4-20mA,
	Anschlussklemmen 20 und 21
0-20 mA	Istwerterfassung mittels Stromsignal, Signalbereich 0-20mA,
	Anschlussklemmen 20 und 21
PT100	Istwerterfassung mittels PT100, Anschlussklemmen 22, 23 und 24
- back -	Rückkehr in das Menü IPC Param

Verdrahtungsbeispiele siehe 1.9.1

1.13.4 Sens scale – Skalierung des Wertebereichs

Menü zur Einstellung des Wertebereichs "in Einheiten" der Istwert-Erfassung.

Beispiel Druckregelung: Der Istwert wird mit einem Drucksensor mit Messbereich 0 - 6 bar erfasst, es ergeben sich folgende Einstellungen: Value min =0, Value max =6

Eintrag	Beschreibung
Value min	Aufruf des Untermenüs zur Einstellung des minimalen Istwerts
Value max	Aufruf des Untermenüs zur Einstellung des maximalen Istwerts
- back -	Rückkehr in das Menü IPC Param

Value min:

Wertebereich	-9999.9 – Value max.
Standardwert	0.0

Value max:

Wertebereich	Value min. – 9999.9
Standardwert	100.0

1.13.5 **IPC mode**

IPC mode	35
o ON	
• OFF	
o LCD only	
– back –	

Eintrag	Beschreibung
ON	IPC ist aktiviert
OFF	IPC ist deaktiviert und arbeitet als Standardregler 8049-4
	Ein deaktivierter IPC wird im Display durch eine abwechselnde Anzeige
	(Standardanzeige 8049-4 und Meidung "IFC IS OFF) dargesteint.
LCD only	IPC ist deaktiviert und arbeitet als Standardregler 8049-4.
	Der deaktivierte IPC wird im Gegensatz zum Menüeintrag "OFF" nicht durch eine abwechselnde Anzeige dargestellt.
	Einstellung, wenn ein Standardregler 8049-4 mit zusätzlichem Display benötigt wird.
- back -	Rückkehr in das Menü IPC Param

1.13.6 Filter – Filter des Iswert Signals

Filter	53
o ON	
• OFF	
– back –	

Eintrag	Beschreibung
ON	Vorfilterung des Istwert-Signals ist aktiviert
OFF	Vorfilterung des Istwert-Signals ist deaktiviert
- back -	Rückkehr in das Menü IPC Param

1.13.7 Step func - Sprungfunktion

Menü zur Einstellung und Ausführung eines Sprungs in der Stellgröße. Kann bei der Ermittlung der Streckenverstärkung (siehe Abschnitt 1.22.5) angewandt werden.

Eintrag	Beschreibung	
Position 1	Aufruf des Untermenüs zur Einstellung der ersten Position der Sprungfunktion	
Position 2	Aufruf des Untermenüs zur Einstellung der zweiten Position der Sprungfunktion	
Step	Mit jedem Betätigen der Taste SEL wird zwischen Position 1 und 2 gewechselt	
- back -	Rückkehr in das Menü IPC Param, es wird wieder auf den zuletzt gültigen Sollwert geregelt	

Step pos 1:

<u></u>	
Wertebereich	0.0% - 100.0%
Standardwert	40.0%

Step pos 2:

Wertebereich	0.0% - 100.0%	
Standardwert	60.0%	

1.13.8 Alarm

Alarm	47	7
o ON		
• OFF		
– back –		

Eintrag	Beschreibung
ON	IPC Alarme sind aktiviert, Aufruf des Untermenüs zur Konfiguration der Alarme
OFF	IPC Alarme sind deaktiviert
- back -	Rückkehr in das Menü IPC Param

1.13.8.1 Alarm conf

Menü zur Einstellung des Alarmtyps, der Grenzwerte und Hysterese zur Ermittlung der IPC Alarme. Hysterese und Grenzwerte werden "in Einheiten" der Prozessgröße (siehe Abschnitt 1.13.4) angegeben.

Eintrag	Beschreibung
Setpt rel	Aufruf des Untermenüs zur Einstellung des relativen Schwellenwertes (Anwendung bei
	relativen Alarmtypen und Bandalarm)
Setpt abs	Aufruf des Untermenüs zur Einstellung des absoluten Schwellenwertes (Anwendung bei
	absoluten Alarmtypen)
Hysteresis	Aufruf des Untermenüs zur Einstellung der Alarmhysterese (Anwendung unabhängig
	vom Alarmtyp)
Alarmtype	Aufruf des Untermenüs zur Festlegung des Alarmtyps
- back -	Rückkehr in das Menü Alarm

Setpt rel:

Wertebereich	Value min – Value max (wie in Menü Sens scale, Abschnitt 1.13.4, festgelegt)
Standardwert	5.0

Setpt abs:

Wertebereich	Value min – Value max (wie in Menü Sens scale, Abschnitt 1.13.4, festgelegt)
Standardwert	90.0

Hysteresis:

11931010313.	
Wertebereich	0.0 – 100.0
Standardwert	1.0

1.13.8.1.1 Alarmtype

Menü zur Einstellung des Alarmtyps. Je nach Auswahl werden die Parameter *Setpt rel* und *Hysteresis* oder *Setpt abs* und *Hysteresis* zur Auswertung des Alarms verwendet. Ein aktiver Alarm wird durch eine blinkende Glocke in der Hauptansicht des IPC angezeigt.

Alarmtype			52
٠	Band	ł	
0	Rel	low	
0	Rel	high	
0	Abs	low	
0	Abs	high	
	– ba	ack -	

Eintrag	Beschreibung
Band	
Rel low	
Rel high	Auswahl des Alarmtyps (Erklärung siehe Abschnitt 1.17)
Abs low	
Abs high	
- back -	Rückkehr in das Menü Alarm Config

1.13.9 Cycle time - Zykluszeit

Cycle time	59
o 25 ms	
• 50 ms	
o100 ms	
o 200 ms	
o 500 ms	
- back -	

Eintrag	Beschreibung
25 ms	IPC Zykluszeit ist 25 ms
50 ms	IPC Zykluszeit ist 50 ms
100 ms	IPC Zykluszeit ist 100 ms
200 ms	IPC Zykluszeit ist 200 ms
500 ms	IPC Zykluszeit ist 500 ms
- back -	Rückkehr in das Menü IPC Param

1.13.10 Digits - Nachkommastellen

Menü zur Einstellung der angezeigten Nachkommastellen bei der Darstellung der internen Sollwertvorgabe (siehe Abschnitt 1.13.2), Minimal- und Maximalwert des Eingangssignals (siehe Abschnitt 1.13.4) sowie relativem und absolutem Schwellwert und Hysterese der Alarmfunktion

D	igi	lts		60]
0	0				
0	1				
٠	2				
	-	back	-		

Eintrag	Beschreibung
0	Keine Nachkommastelle
1	Eine Nachkommastelle
2	Zwei Nachkommastellen
- back -	Rückkehr in das Menü IPC Param

1.13.11 Work dir - Wirkrichtung

D	igits	61
•	direct	
0	invers	
	- back -	

Eintrag	Beschreibung
direct	Regelsignal wirkt direkt
invers	Regelsignal wirkt invers
- back -	Rückkehr in das Menü IPC Param

1.13.12 Errror act - Fehleraktionen

Error act	62
Com timeout	
Setpt min	
Setpt max	
Actval min	
Actval max	
- back -	

Eintrag	Beschreibung
Com timeout	Untermenü zur Einstellung der Aktion bei einem Kommunikations-Timeout zum IPC-
	Modul
Setpt min	Untermenü zur Einstellung der Aktion bei Unterschreitung des zulässigen Minimalwertes
	des Sollwerts
Setpt max	Untermenü zur Einstellung der Aktion bei Überschreitung des zulässigen Maximalwertes
	des Sollwerts
Actval min	Untermenü zur Einstellung der Aktion bei Unterschreitung des zulässigen Minimalwertes
	des Istwerts
Actval max	Untermenü zur Einstellung der Aktion bei Überschreitung des zulässigen Maximalwertes
	des Istwerts
- back -	Rückkehr in das Menü IPC Param

1.13.13 Untermenüs Fehleraktion

Für jeden der in Abschnitt 1.13.12 aufgelisteten Fehler stehen die gleichen Aktionen beim Auftreten des Fehlers zur Auswahl. Die Aktionen sind für jeden Fehler individuell und unabhängig von den ausgewählten Aktionen anderer Fehler einstellbar.

Eintrag	Beschreibung
Drain	Der Antrieb wird im Fehlerfall entleert
Fill	Der Antrieb wird im Fehlerfall gefüllt
Position	Legt den Stellwert an den 8049-4 fest, der im Fehlerfall eingenommen wird. Die Einstellung erfolgt über das jeweilige Untermenü "Error pos".
Inactive	Im Fehlerfall erfolgt keine gesonderte Aktion (Standardeinstellung)
- back -	Rückkehr in das Menü IPC Param

Fehlerposition:

Wertebereich	0.0% – 100.0%
Standardwert	0.0%

1.13.14 SW Version - Softwareversion

Anzeige der Software-Version des IPC-Erweiterungsmoduls.

SW	version	89
	1 01 00	
	1.01.00	
-	- раск -	

1.14 Menüführung 8049-4

Im Menü "Parameter" und den zugehörigen Untermenüs können die wichtigsten Einstellungen für den Stellungsreger **Typ 8049-4** vorgenommen werden.

Parameter	1
Sig range	
Working dir	
Safety pos	
Char curve	
Shut off	
Stroke lim	
Hysteresis	
- back -	

Eintrag	Beschreibung
Sig range	Untermenü zur Einstellung des Eingangssignalbereichs
Working dir	Untermenü zur Einstellung der Wirkrichtung des Eingangssignals
Safety pos	Untermenü zur Einstellung der Sicherheitsstellung
Char curve	Untermenü zur Einstellung der Kennlinie
Shut off	Untermenü zur Einstellung der Dichtschließfunktion
Stroke lim	Untermenü zur Einstellung der elektronischen Hubbegrenzung
Hysteresis	Untermenü zur Einstellung der Genauigkeit der Regelhysterese
- back -	Rückkehr in das Menü Menu main

1.14.1 Sig range - Sollwertsignalbereich

S	ig	ra	ang	e	4
٠	4	_	20	mA	
0	0	-	20	mΑ	
0	4	-	12	mΑ	
0	12	-	20	mA	
0	vä	ar	iab	le	
	_	ba	ack	_	

Eintrag*	Beschreibung
4-20 mA	Bereich des Sollwertsignals ist 4-20mA
0-20 mA	Bereich des Sollwertsignals ist 0-20mA
4-12 mA	Bereich des Sollwertsignals ist 4-12mA (bei Split-Range Anwendungen)
12-20 mA	Bereich des Sollwertsignals ist 12-20mA (bei Split-Range Anwendungen)
variable	Untermenü zur Einstellung eines beliebigen Bereichs des Sollwertsignals
- back -	Rückkehr in das Menü Parameter

*Bei Verwendung eines Spannungssignals zur Sollwertvorgabe wird dies im Menü entsprechend dargestellt (2-10 V/0-10 V/2-6 V/6-10 V/variable)

1.14.1.1 Variable – Variable Einstellung des Stellsignalbereichs

Eintrag	Beschreibung
bottom	Untermenü zur Einstellung der unteren Grenze des Sollwertsignals
top	Untermenü zur Einstellung der oberen Grenze des Sollwertsignals
- back -	Rückkehr in das Menü Sig range

Solion.		
Wertebereich	0.0 - Тор	
Standardwert	4.0	

l op:	
Wertebereich	Bot – 20.0
Standardwert	20.0

1.14.2 Work dir – Wirkrichtung des Stellsignals

Work dir	8
• signal op o signal cl	
- back -	

Eintrag	Beschreibung
signal op	steigendes Signal öffnet
signal cl	steigendes Signal schließt
- back -	Rückkehr in das Menü Parameter

Safety pos - Sicherheitsstellung 1.14.3

Safety pos	9
• spring cl	
o spring op	
– back –	

Eintrag	Beschreibung
spring cl	Sicherheitsstellung: Feder schließt
spring op	Sicherheitsstellung: Feder öffnet
- back -	Rückkehr in das Menü Param

1.14.4 Char curve - Stellkennlinie

Menü zur Auswahl der Stellkennlinie.

Diese Einstellung muss vorgenommen werden wenn der Stellungsregler auf ein anderes Ventil aufgebaut wird. Die Auswahl der Kennlinie kann anhand des Ventiltypenschildes erfolgen.

Char curve	1()
• Seat valve		
o GS 15		
o GS 20-40		
o GS 50-80		
oGS 100-125		
o GS 150-250		
o SPV		
o KSV		
o variable		
- back -		

Eintrag	Beschreibung
Seat valve	Standardkennlinie für Sitzventile
GS 15	Standardkennlinie für Gleitschieberventile DN 15
GS 20-40	Standardkennlinie für Gleitschieberventile DN 20-40
GS 50-80	Standardkennlinie für Gleitschieberventile DN 50-80
GS 100-125	Standardkennlinie für Gleitschieberventile DN 100-125
GS 150-250	Standardkennlinie für Gleitschieberventile DN 150-250
SPV	Standardkennlinie für Segmentplattenventile
KSV	Standardkennlinie für Kugelsektorventile
variable	Untermenü zur beliebigen Einstellung des Steilasts (elektronisch und mechanisch, siehe
	Abschnitt 1.14.5)
- back -	Rückkehr in das Menü Parameter

1.14.5 Lift load - Steilast

Der "Steilast" ist eine Möglichkeit einen Teil des unteren Hubbereiches schnell zu durchfahren. Bei Gleitschieberventilen wird diese Funktion dazu verwendet, den Bereich der Überdeckung schnell zu durchfahren und nennweitenunabhängig einen Durchflussbeginn bei 5 mA zu gewährleisten. Standardmäßig wird der Steilast anhand der Stellkennlinie eingestellt. Dieses Menü wird nur für Sondereinstellungen benötigt.

Eintrag	Beschreibung
electrical	Untermenü zur Einstellung des erforderlichen Stellsignalwertes, bei dem der unter
	"mechanical" angegebene Hub erreicht wird
mechanical	Untermenü zur Einstellung des Hubs, der bei dem unter "electrical" angegebenen
	Stellsignalwert erreicht wird
- back -	Rückkehr in das Menü Parameter

Electrical:

Wertebereich	0.0% - 100.0%
Standardwert	0.0%

Mechanical:

Wertebereich	0.0% - 100.0%
Standardwert	0.0%

1.14.6 Shut off – Dichtschließfunktion

Die Dichtschließfunktion oben bewirkt, dass der Antrieb über diesem Stellsignal komplett befüllt wird Die Dichtschließfunktion unten bewirkt, dass der Antrieb unter diesem Stellsignal komplett entlüftet wird.

Shut off	14
• active	
- back -	

Eintrag	Beschreibung
active	Dichtschließfunktion ist aktiviert
	Einstellung des unteren und oberen Dichtschließbereichs
inactive	Dichtschließfunktion ist deaktiviert
- back -	Rückkehr in das Menü Parameter

1.14.6.1 Active

Eintrag	Beschreibung
bottom	Untermenü zur Einstellung des oberen Dichtschließbereichs
top	Untermenü zur Einstellung des unteren Dichtschließbereichs
- back -	Rückkehr in das Menü Shut off

Bottom:	
Wertebereich	0.0% – Top
Standardwert	1.0%

Top:

Wertebereich	Bot – 100.0%
Standardwert	98.5%

1.14.7 Stroke lim – Hubbegrenzung

Mit der Hubbegrenzung oben wird der Maximalwert der Stellkurve definiert. Mit der Hubbegrenzung unten wird der Minimalwert der Stellkurve definiert.

Eintrag	Beschreibung
bottom	Untermenü zur Einstellung des unteren Wertes der elektronischen Hubbegrenzung
top	Untermenü zur Einstellung des oberen Wertes der elektronischen Hubbegrenzung
- back -	Rückkehr in das Menü Stroke Parameter

Limit bot:

Wertebereich	0.0% – Top
Standardwert	0.0%

Limit top:

Wertebereich	Bot – 100.0%
Standardwert	100%

1.14.8 Hysteresis - Regelhysterese

Die Regelyhsterese gibt an, wie genau der Sollwert eingeregelt werden soll.

Der Regler stoppt innerhalb eines Bandes, welches durch den eingestellten Wert in positiver und negativer Richtung um den theoretischen Sollwert definiert ist. Der Prozentwert bezieht sich auf den Hub, welcher beim Selbstabgleich ermittelt wurde.

Eintrag	Beschreibung
0.2%	Hysterese 0.2%
0.4%	Hysterese 0.4%
0.6%	Hysterese 0.6%
variable	Untermenü zur Einstellung einer beliebigen Hysterese
- back -	Rückkehr in das Menü Parameter

Variable:

Wertebereich	0.1% - 2.0%
Standardwert	0.4%

1.15 Menüführung Allgemein

1.15.1 Info

Das Menü "Info" und die zugehörigen Untermenüs zeigen Informationen zum Selbstabgleich sowie die Seriennummer, Software-Version und Betriebsstunden des Stellungsreglers.

Info	21
Adaption	
Serial Nr	
SW Version	
Op hours	
– back –	

Eintrag	Beschreibung
Adaption	Untermenü mit Informationen zum Selbstabgleich
Serial Nr	Anzeige der Seriennummer der Stellungsreglerhauptplatine
SW Version	Anzeige der SW Version der Stellungsreglerhauptplatine
Op hours	Anzeige der Betriebsstunden der Stellungsreglerhauptplatine
- back -	Rückkehr in das Menü Menu main

1.15.1.1 Adaption – Messwerte des Selbstabgleichs

Das Menü "Adaption" enthält alle relevanten Informationen zum Selbstabgleichs (siehe Abschnitt 1.18)

Eintrag	Beschreibung
valvestroke	Anzeige des Ventilhubs
top	Anzeige der Position des oberen Messpunkts (in % des gesamten möglichen Bereichs
	der Wegerfassung)
bottom	Anzeige der Position des unteren Messpunkts (in % des gesamten möglichen Bereichs
	der Wegerfassung)
time fill	Anzeige der Befüllzeit des Antriebs
time drain	Anzeige der Entleerzeit des Antriebs
counter	Anzeige der Anzahl der durchgeführten Selbstabgleiche
- back -	Rückkehr in das Menü Adaption
1.15.1.2 Serial Nr – Seriennummer der Hauptplatine

Anzeige der Seriennummer der Hauptplatine des Stellungsreglers.

Serial nr	29
S0800000	
90649832	
– back –	

1.15.1.3 SW Version - Softwareversion

Anzeige der SW-Version der Hauptplatine des Stellungsreglers

SW version	30
01.03.0	
- back -	

1.15.1.4 Op hours - Betriebsstunden

Anzeige der Betriebsstunden der Hauptplatine des Stellungsreglers.

Op hours	31
6.7h	ı
- back -	

1.15.2 Error Info

Im Menü "Error Info" und den zugehörigen Untermenüs sind nähere Information zu aufgetretenen Fehlern enthalten. Dabei wird unterschieden zwischen den Fehlerklassen E01, E02 und E03 (siehe auch Abschnitt 1.20), Meldungen nach NAMUR (Wartung notwendig, Betrieb außerhalb der Spezifikation, Überprüfung der Funktion) sowie Fehlern, die den IPC betreffen.

Es wird jeweils die Anzahl der vorhandenen Fehlerinformationen angezeigt, in den jeweiligen Untermenüs wird mit den IN/OUT Tasten zur vorherigen/nächsten Fehlerinformation navigiert, am Ende einer jeden Fehlerliste (Kennzeichnung durch " – back - ") kann in das Menü Error Info zurückgesprungen werden. Die Fehlerliste wird zyklisch aktualisiert, ist keine Fehlermeldung vorhanden, wird dies ebenso per Meldung dargestellt.

Eintrag	Beschreibung	
E01	Informationen zu allen Fehlern der Fehlerklasse E01 des Stellungsreglers 8049-4	
E02	Informationen zu allen Fehlern der Fehlerklasse E02 des Stellungsreglers 8049-4	
E03	Informationen zu allen Fehlern der Fehlerklasse E03 des Stellungsreglers 8049-4	
₽=>	Informationen zu allen Zuständen des Stellungsreglers 8049-4, die eine Wartung erfordern	
?	Informationen, wenn der Stellungsregler 8049-4 außerhalb seiner Spezifikation betrieben wird	
S	Informationen zu allen Zuständen des Stellungsreglers 8049-4, die eine Überprüfung der Funktion erfordern	
IPC	Informationen zu allen Fehlern des integrierten Prozessreglers (8049 IPC)	
- back -	Rückkehr in das Menü "Menu main"	

1.15.3 Settings

Eintrag	Beschreibung
Self adapt	Untermenü zur Ausführung des Selbstabgleichs
Factory rst	Untermenü zur Ausführung des Werksresets
	passwortgeschützt (Standardpasswort: 1)
Change pass	Untermenü zur Änderung des Passworts
Ada restore	Untermenü zur Wiederherstellung des letzten gültigen Selbstabgleichs
	Dieser Menüpunkt wird nur angezeigt, wenn ein Selbstabgleich fehlschlägt und ein
	früherer, gültiger Selbstabgleich existiert.
- back -	Rückkehr in das Menü "Menu main"

1.15.3.1 Self adapt – Start des Selbstabgleichs

Menü zum Start eines Selbstabgleichs. Dieser muss nach der Auswahl im Menü Settings nochmals bestätigt werden (YES), die Displayanzeige wechselt zur Darstellung des Fortschritts des Selbstabgleichs. Nach dessen Abschluss erfolgt einen Rückkehr in das Menü Settings.

Wird der Start des Selbstabgleichs nicht bestätigt (NO), so erfolgt automatisch die Rückkehr in das Menü Settings.

		95	ō
Self	adapt		
NO			
YES			

1.15.3.2 Factory rst –Start des Werksresets

Menü zur Durchführung eines Werksresets. Dieser muss nach der Auswahl im Menü *Settings* und Eingabe des Passworts nochmals bestätigt werden (YES). Wird der Werksreset nicht bestätigt (NO), so erfolgt automatisch die Rückkehr in das Menü *Settings*.

Der Werksreset setzt alle Einstellungen des 8049-4 und des IPC auf den Auslieferungszustand zurück. Die hierbei angewendeten Standardwerte der einzelnen Parameter sind in den jeweiligen Kapiteln der Menüführung angegeben. Bei Menüs, in denen eine Auswahl erfolgt, ist die Standardauswahl mit dem Symbol • markiert.

Wartungsdaten sind vom Werksreset nicht beeinflusst und bleiben erhalten.

1.15.3.3 Change pass

Menü zur Änderung des Passworts. Das Standardpasswort ist "1", um das Passwort zu ändern, ist zuerst das aktuelle und anschließend das neue Passwort einzugeben. Wird das aktuelle Passwort falsch eingegeben, wird der Vorgang zur Änderung des Passworts abgebrochen, es erfolgt eine Rückkehr in das Menü *Settings*.

Dieses Menü wird nur dann angezeigt, wenn die Verwendung eines Passworts in der Konfigurationssoftware DeviceConfig aktiviert ist (Standard: aktiviert).

1.15.3.4 Ada restore – Wiederherstellung des letzten gültigen Selbstabgleichs

Menü, um nach einem fehlgeschlagenen Selbstabgleich den letzten gültigen Selbstabgleich wiederherzustellen. Dieses Menü wird nur dann angezeigt, wenn nach einem erfolgreichen Selbstabgleich erneut ein Selbstabgleich durchgeführt wurde, der nicht erfolgreich abgeschlossen werden konnte. Das Wiederherstellen des letzten gültigen Selbstabgleichs muss nach der Auswahl im Menü Settings nochmals bestätigt werden (YES). Wird der Vorgang nicht bestätigt (NO), so erfolgt automatisch die Rückkehr in das Menü Settings.

		88	3
Ada	restore		
YES			
NO			

1.16 Weitere Betriebsmodi

Neben den Standardfunktionen (integrierter Prozessregler oder Stellungsregler) gibt es weitere Betriebsmodi des 8049 IPC. Um diese zu nutzen (Zugang über IN oder OUT Tasten), muss der 8049 IPC mit elektrischer Energie versorgt und an eine Druckluftversorgung angeschlossen sein.

1.16.1 Handverstellung

Um auf Handbetrieb umzustellen muss der Regler "aktiv" sein. Dazu muss der Regler mit elektrischer Energie versorgt werden und mit der Druckluft verbunden sein.

Das Umschalten in den Modus "Handverstellung" erfolgt durch Drücken der Taste "OUT" so lange, bis der angezeigte Balken durchgelaufen ist (ca. 3 Sekunden).

Durch Drücken der Tasten "IN" (Zuluft in den Antrieb) bzw. "OUT" (Antrieb wird entlüftet) wird das Ventil auf bzw. zu bewegt. Wird keine Taste betätigt, schließt der Stellungsregler die Luft im Antrieb ein.

Das Ausschalten der Handverstellung erfolgt durch kurzes, gleichzeitiges Drücken der IN und OUT Taste. Abhängig vom eingestellten IPC Modus (siehe 1.5.2.2.5) wird wieder auf den vorgegebenen Sollwert (IPC on) oder die vorgegebene Ventilposition (IPC off, LCD only) geregelt.

Werden die IN und OUT Tasten zu lange betätigt (mehr als ca. 2-3 Sek.), geht der Stellungsregler in den Justagebetrieb.

Nach einem Neustart befindet sich der Stellungsregler immer im Automatikmodus.

Da im Modus Handverstellung keine Positionsregelung erfolgt eignet sich dieser Modus um eine erhöhte Leckage des Systems zu diagnostizieren. Hierzu sollte das Ventil mit der Handverstellung auf ca. 50% Öffnung bewegt werden.

Anschließend wird das Ventil für ca. 10 Minuten beobachtet.

Ventilverhalten	Mögliche Ursache	Behebung
Ventil bewegt sich entgegen der Sicherheitsstellung (Druck im Antrieb steigt)	 Zu hoher Versorgungsdruck Interne Undichtigkeit 	 Versorgungsdruck reduzieren Reparatur- und Serviceabteilung kontaktieren
Ventil bewegt sich in Richtung Sicherheitsstellung (Druck im Antrieb sinkt)	 Verschraubungen undicht Verschlissene Dichtungen im Stellungsregler oder Antrieb 	 Verschraubungen auf Dichtigkeit überprüfen und evtl. nachziehen Reparatur- und Serviceabteilung kontaktieren

Jeder Stellungsregler besitzt eine innere Leckage. Das führt dazu, dass das Ventil sich langsam in die Sicherheitsstellung bewegt. Ein kompletter Schließvorgang dauert zwischen 30 Minuten und mehreren Stunden.

1.16.2 Manuelle Sollwertvorgabe

Um auf Manuelle Sollwertvorgabe umzustellen muss der Regler "aktiv" sein. Dazu muss der Regler mit elektrischer Energie versorgt werden und mit der Druckluft verbunden sein. Zusätzlich muss ein gültiger Selbstabgleich vorhanden sein.

Das Umschalten in den Modus "manuelle Sollwertvorgabe" erfolgt durch Drücken der Taste "IN" so lange, bis der angezeigte Balken durchgelaufen ist (ca. 3 Sekunden).

Bei der manuellen Sollwertvorgabe wird über die beiden Tasten IN und OUT die Ventilöffnung (0%-100% des Gesamthubes) vorgegeben. Drücken der Taste IN erhöht den Sollwert, drücken der Taste OUT erniedrigt ihn. Dieser Betriebsmodus wird in der Hauptanzeige des 8049 IPC durch anzeigen des Stellsignals "Y" anstelle des Sollwerts "W" dargestellt.

Das Ausschalten der Handverstellung erfolgt durch kurzes, gleichzeitiges Drücken der IN und OUT Taste. Abhängig vom eingestellten IPC Modus (siehe 1.13.5) wird wieder auf den vorgegebenen Sollwert (IPC on) oder die vorgegebene Ventilposition (IPC off, LCD only) geregelt.

	Werden die IN und OUT Tasten zu lange betätigt (mehr als ca. 2-3 Sek.), geht der Stellungsregler in den Selbstabgleich (siehe Abschnitt 1.18).
1	Nach einem Neustart befindet sich der Stellungsregler immer im Automatikmodus.
1	Anstelle der manuellen Sollwertvorgabe wird durch Drücken der IN-Taste die Handverstellung aktiviert, sollte der Stellungsregler keinen gültigen Selbstabgleich haben.

1.17 **IPC Alarme**

Im Menü *IPC Param* \rightarrow *Alarm* wird die Alarmfunktion des 8049 IPC aktiviert bzw. deaktiviert und der Alarmtyp festgelegt. Je nach Auswahl des Alarmtyps werden unterschiedliche Parameter zur Alarmermittlung genutzt. In der nachfolgenden Tabelle sind die verwendeten Parameter sowie die Auslöse- und Rücknahmewerte der einzelnen Alarme beschrieben. Die anschließende Abbildung dient nochmals der Veranschaulichung.

Alarmtyp	Auslöseschwelle	Rücknahmeschwelle
Band	untere Schwelle:	untere Schwelle:
	Sollwert - Setpt rel – Hysteresis	Sollwert – Setpt rel + Hysteresis
	obere Schwelle:	obere Schwelle:
	Sollwert + Setpt rel + Hysteresis	Sollwert +Setpt rel - Hysteresis
Rel low	Sollwert - Setpt rel - Hysteresis	Sollwert - Setpt rel + Hysteresis
Rel high	Sollwert + Setpt rel + Hysteresis	Sollwert +Setpt rel - Hysteresis
Abs low	Setpt abs - Hystersis	Setpt abs + Hysteresis
Abs high	Setpt abs + Hystersis	Setpt abs - Hysteresis

Ein IPC Alarm kann über den Alarmausgang auf der Hauptplatine angezeigt werden (einstellbar mit DeviceConfig)

1.18 Selbstabgleich

Die Justierung (Selbstabgleich) des montierten Stellungsreglers wird im Werk vorgenommen. Sie ist normalerweise nur nach einem Austausch oder evtl. nach einer Reparatur des Ventils erforderlich.

Nachdem ein neuer oder getauschter Stellungsregler auf das Ventil montiert wurde, muss er justiert werden. Um den Selbstabgleich zu starten gibt es zwei Möglichkeiten, der Regler muss dabei immer mit elektrischer Energie und Druckluft versorgt werden:

Start des Selbstabgleichs über Tasten der Hauptplatine

- Beide Tasten "IN" und "OUT" der Hauptplatine des Stellungsreglers drücken (nach 2-3 Sekunden)

Start des Selbstabgleichs über Menü Settings

- Auswahl des Menüpunktes Self adapt im Menü Settings (siehe Abschnitt 1.15.3.1)

Das Ventil öffnet und schließt mehrmals. Während des Selbstabgleichs durchläuft der Stellungsregler verschiedene Modi:

- "WAY OUT" Antrieb wird entlüftet
- "WAY IN" Antrieb wird befüllt
- "SPEED" Die Geschwindigkeit des Antriebs wird gemessen
- "OVERSHOOT" Die Dynamik des Antriebs wird ermittelt

Nach Beenden der Justierung wechselt der Regler bei fehlerfreiem Abgleich selbstständig wieder in den Regelbetrieb (Start über Taster IN und OUT der Hauptplatine) bzw. zurück in das Menü Settings (Start über Menüpunkt Self adapt).

Der Selbstabgleich kann nicht über die "IN" und "OUT" Taste der Folientastatur gestartet werden.

1.18.1 Wiederherstellen des letzten gültigen Selbstabgleichs

Wurde der Stellungsregler erfolgreich abgeglichen und ein erneut durchgeführter Selbstabgleich schlägt fehl, so können die Werte des letzten erfolgreichen Selbstabgleichs wiederhergestellt werden. Hierzu ist der Menüpunkt *Menu settings -> Ada restore* auszuwählen. Dieser Menüpunkt wird nur dann angezeigt, wenn die Bedingungen für eine Wiederherstellung des letzten gültigen Selbstabgleichs gegeben sind (siehe auch Abschnitt 1.15.3.4).

1.19 Konfigurierung mit PC-Software DeviceConfig

Zusätzlich zur Einstellung aller Parameter des 8049 IPC und der wichtigsten Parameter des 8049-4 über das Menü können diese auch über eine PC -Schnittstelle und die Konfigurierungssoftware "DeviceConfig" erfolgen.

Für die Inbetriebnahme sowie den Betrieb des 8049 IPC und auch dessen Justierung nach einem evtl. Austausch wird sie <u>nicht</u> benötigt, wenn nicht spezielle lokale Einstellungen gespeichert waren.

1.20 Fehlermeldungen

Der 8049 IPC und der Stellungsregler 8049-4 zeigen Fehlermeldungen am Display an. Im Menü *Error info* (siehe Abschnitt 1.15.2) sind detailliertere Informationen zu den Fehlermeldungen enthalten, zusätzlich werden Meldungen nach NAMUR NE107 dargestellt.

Da im Display nur eine Fehlermeldung angezeigt werden kann, erfolgt die Darstellung gemäß nachfolgender Tabelle priorisiert (absteigend):

Code	Fehlerquelle	Bedeutung
	8049-4	Abgleich durchführen
NO ADAPTION	Regler nicht abgeglichen	
⊗E01		
Code:90		
	8049-4	Während des Selbstabgleiches ist die Ermittlung
	Regler nicht abgeglichen	des Hubes gescheitert.
II 🕸 EUT I		Mögliche Abhilfe:
Code:91		– Zuluftdruck prüfen
		 Pr üfen, ob die Taststange eingerastet ist
	8049-4	Während des Selbstabgleiches konnte keine
	Regler nicht abgeglichen	stabile Position angefahren werden.
IVEVI		Mögliche Abhilfe:
Code:92		 Dichtigkeit der Druckluftverbindung zum Antrieb
		prüfen
		- Gewindestifte zur Reglermontage prüfen
	8049-4	Aktuell gemessener Hub befindet sich außerhalb
	Regler nicht abgeglichen	des Hubbereichs des letzten Selbstabgleichs.
		Mögliche Abhilfe:
Code:93		 Pr üfen, ob die Taststange eingerastet ist
		 Gewindestifte zur Reglermontage pr üfen
	8040.4	– Abgleich durchführen
NO ADAPTION	Realer nicht abgeglichen	Abgleich fehlgeschlagen, es wurden die Werte
		des letzten gültigen Selbstabgleichs geladen
INSEAT		(über Menü Settings → "Ada restore", siehe
Code:94		Abschnitt 1.15.3.4)
	8040 IDC	Istwort Maximum üborschritton
SENSOR MAX	0049 IFC	
NT J N		
Setpoint:00.0%		
		lotwort Minimum unterschritten
SENSOR MEN	0049 IFC	
IVELLI		
Setpoint:00.0%		

Code	Fehlerquelle	Bedeutung
SETPT MAX E12 Setpoint:00.0%	8049 IPC	Sollwert Maximum überschritten
SETPT MIN E13 Setpoint:00.0%	8049 IPC	Sollwert Minimum unterschritten
TIMEOUT IPC Setpoint:00.0%	8049 IPC	Die Kommunikation zum IPC Erweiterungsmodul ist unterbrochen Mögliche Abhilfe: - Prüfen, ob das Verbindungskabel auf dem Erweiterungsmodul und der Hauptplatine richtig eingesteckt ist
NO SIGNAL E02 Setpoint:00.0%	8049-4 Sollwertsignalfehler	Das Stellsignal liegt außerhalb des gültigen Bereichs Dieser Fehler wird nur diagnostiziert wenn der IPC im Modus "IPC OFF" oder "LCD only" ist.
CONTROL ERR E03 Setpoint: 00.0%	8049-4 Regelfehler	Das Ventil erreicht nicht seine Sollposition

Mit der Software "DeviceConfig" kann festgelegt werden, welche Betriebszustände und Fehlermeldungen über den Sammelstörmeldeausgang ausgegeben werden sollen. Standardmäßig wird nur der "Regelfehler" ausgegeben.

1.21 Störungsbeseitigung

Fehler / Symptom	Mögliche Ursache(n)	Vorgehensweise
Antrieb bewegt sich nicht	 Steuerdruck ist zu gering 	• Steuerdruck auf 4-6 bar erhöhen.
Antrieb fährt nicht bis zum	 Steuerdruck ist zu gering 	 Steuerdruck erhöhen.
Anschlag (bei 20mA)	 Regler ist nicht richtig abgeglichen 	Abgleich durchführen
Im stationären Automatikbetrieb (konstanter Sollwert) schalten	• Leckage in Verbindung vom Stellungsregler zum Antrieb.	 Leckage suchen und beseitigen.
die Magnetventile ständig.*	Leckage im Antrieb	 Dichtungen des Antriebs wechseln.
Magnetventile schalten nicht.	Magnetventile nicht richtig	Steckverbindung der
	kontaktiert	Magnetventile überprüfen.
	Schmutz (Späne, Partikel)	••
	in den Magnetventilen	 Magnetventile tauschen.
Ventil öffnet nicht.	 Taststange ist lose. 	Sitz der Taststange überprüfen

Fehler / Symptom	Mögliche Ursache(n)	Vorgehensweise
Regler funktioniert nicht.	 Polarität des Stellsignals ist vertauscht. 	 Polarität des Stellsignals überprüfen
Positionen des Ventils werden nicht richtig angefahren.	 Regler ist nicht richtig abgeglichen. 	 Selbstabgleich durchführen.
Regler reagiert nicht auf Stellsignal.	 Regler befindet sich im Handbetrieb 	 Durch Drücken der beiden Tasten (IN und OUT) in den Automatikmodus wechseln

*Zutreffend, wenn IPC mode auf OFF gesetzt ist. Ist der IPC mode auf ON gesetzt, wird eine Prozessgröße auf einen vorgegebenen Sollwert geregelt. Sich ständig ändernde Umgebungsbedingungen (Störgrößen) führen funktionsbedingt zum Schalten der Magnetventile, um die Prozessgröße auf dem vorgegebenen Wert zu halten.

1.22 Einstellen der Regelparameter

Für die Ermittlung der Regelparameter stehen verschiedene Verfahren zur Verfügung. Hier sollen die wichtigsten kurz erläutert werden.

1.22.1 Empirische Einstellung

Diese Methode ist geeignet um einfache Systeme einzustellen, insbesondere dann, wenn bereits Erfahrungen mit ähnlichen Regelkreisen vorliegen.

Beginnend mit einer unkritischen Einstellung (Kp klein, z.B. 1.1, Tn = INACTIVE und Td = INACTIVE) wird die Verstärkung Kp langsam erhöht, bis der Regelkreis zu schwingen beginnt. Falls eine Schwingneigung auftritt, muss die Verstärkung wieder etwas zurückgenommen werden.

Anschließend wird der Integralanteil aktiviert (Tn = ACTIVE) und Tn solange verkleinert, bis ein zufriedenstellendes Ergebnis erreicht wird. Bei Bedarf kann noch ein Differentialanteil hinzugefügt werden (Td = ACTIVE), wobei Td langsam erhöht wird. Wird der Regelkreis dabei stabiler, kann Kp erhöht oder Tn erniedrigt werden, bis ein akzeptables Regelverhalten erreicht wird.

Eine Optimierung der Regelung ohne genaue Kenntnisse der Regelstrecke nur in begrenztem Maße möglich, anhand des Verlaufs des Istwerts können aber einige Verbesserungen im Regelverhalten erreicht werden:

	lstwert nähert sich nur langsam dem Sollwert	Verstärkung Kp erhöhen. Falls dies zu einer Verbesserung führt, anschließend Nachstellzeit Tn verkleinern. Dieses wiederholen bis ein zufriedenstellendes Reglerergebnis erreicht ist.
--	---	--

Istwert nähert sich mit leichten Schwingungen nur langsam dem Sollwert.	Verstärkung Kp erhöhen. Falls dies zu einer Verbesserung führt, anschließend Vorhaltzeit Td verkleinern. Dieses wiederholen bis ein zufriedenstellendes Reglerergebnis erreicht ist.
Istwert nähert sich dem Sollwert ohne wesentlich überzuschwingen.	Optimales Reglerverhalten für Prozesse, die kein Überschwingen zulassen.
Istwert nähert sich dem Sollwert mit leicht gedämpfter Überschwingen.	Optimales Reglerverhalten für schnelles Anregeln und zum Ausregeln von Störanteilen. Das erste Überschwingen soll 10% des Sollwertsprungs nicht überschreiten.
Istwert nähert sich schnell dem Sollwert, schwingt aber weit über. Die Schwingungen sind gedämpft und damit gerade noch stabil	Verstärkung Kp vermindern. Falls dies zu einer Verbesserung führt, anschließend Vorhaltzeit Td vergrößern. Dieses wiederholen bis ein zufriedenstellendes Reglerergebnis erreicht ist.

1.22.2 Methode nach Ziegler-Nichols

Bei der Schwingungsmethode nach Ziegler/Nichols werden die Reglerparameter so verstellt, dass die Stabilitätsgrenze erreicht wird und die Regelgröße periodische Schwingungen ausführt, d.h., der Regelkreis zu schwingen beginnt. Aus der so gefundenen Einstellung können die Reglerparameter ermittelt werden.

Dieses Verfahren ist nur auf Regelstrecken anwendbar, bei denen ein Schwingen keinen Schaden anrichtet und auf Regelkreise die überhaupt instabil gemacht werden können.

Die Vorgehensweise ist wie folgt:

- Regler wird als reiner P-Regler konfiguriert (Tn = INACTIVE, Td = INACTIVE)
- Die Verstärkung Kp wird solange erhöht, bis der geschlossene Regelkreis Dauerschwingungen ausführt (kritischer Zustand)
- Der dabei eingestellte Kp-Wert wird als Kpkrit bezeichnet
- Die Periodendauer T_{krit} der sich einstellenden Dauerschwingung wird gemessen (in Sekunden)

• Anhand der folgenden Tabelle werden abschließend die Regelparamter bestimmt

Development	Verstärkung	Nachstellzeit	Vorhaltzeit
Regiertyp	Кр	Tn	Td
Р	0,50 Kp _{krit}	OFF	OFF
PI	0,45 Kp _{krit}	0,85 T _{krit}	OFF
PID	0,60 Kp _{krit}	0,5 T _{krit}	0,12 T _{krit}

1.22.3 Methode nach Chien, Hrones und Reswick

Bei realen Regelkreisen kann es gefährlich oder unmöglich sein eine Schwingung zu erzeugen, um die Einstellwerte nach der Methode von Ziegler-Nichols zu bestimmen. Hierfür und für Systeme mit großer Verzögerung eignet sich die Methode von Chien-Hrones-Reswick.

Diese beruht auf der Sprungantwort der Regelstrecke und den daraus ermittelten Werten der Verstärkung K_s, der Verzugszeit T_u und der Ausgleichszeit T_g. Das Verfahren sollte nur dann angwendet werden, wenn die folgende Bedingung erfüllt ist:

Die Vorgehensweise ist wie folgt:

- Am Ventil wird ein Sprung der Stellgröße ∆y durchgeführt (siehe Abschnitt 1.22.5)
- Die daraus resultierende Istwertänderung Δx aufgezeichnet

- Berechnung der Verstärkung Ks = $\Delta x / \Delta y$
- In die aufgezeichnete Kurve der Istwertänderung am Wendepunkt der Kurve eine Tangente einzeichnen und die Verzugszeit T_u und die Ausgleichszeit T_g ablesen.
- Je nach Forderung ergeben sich Einstellwerte für ein gutes Störverhalten (gleichbleibender Sollwert, Änderung der Randbedingungen) oder Führungsverhalten (Änderung des Sollwertes, gleichbleibende Randbedingungen) folgende empfohlene Werte :

Poglartyp		Ohne Überschwingen		mit ca. 20% Überschwingen	
Regientyp		Störverhalten	Führungsverhalten	Störverhalten	Führungsverhalten
	Кр	0,3 Tg/(Tu*Ks)	0,3 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)
Р	Tn	OFF	OFF	OFF	OFF
	Td	OFF	OFF	OFF	OFF
PI Tr	Кр	0,6 Tg/(Tu*Ks)	0,35 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,6 Tg/(Tu*Ks)
	Tn	4 Tu	1,2 Tg	2,3 Tu	1 Tg
	Td	OFF	OFF	OFF	OFF
	Кр	0,95 Tg/(Tu*Ks)	0,6 Tg/(Tu*Ks)	1,2 Tg/(Tu*Ks)	0,95 Tg/(Tu*Ks)
PID	Tn	2,4 Tu	1 Tg	2 Tu	1,35 Tg
	Td	0,42 Tu	0,5 Tu	0,42 Tu	0,47 Tu

1.22.4 T-Summen-Regel nach Kuhn

Die T-Summen-Regel kann angewandt werden, wenn die Verzugszeit T_u sehr gering oder überhaupt nicht erkennbar ist oder das Verhältnis zwischen Ausgleichszeit T_g und T_u eine Ermittlung nach Chien, Hrones und Reswick nicht zulässt (wegen T_g < 3^*T_u)

Die Vorgehensweise ist wie folgt:

- Am Ventil wird ein Sprung der Stellgröße ∆y durchgeführt (siehe Abschnitt 1.22.5)
- Die daraus resultierende Istwertänderung Δx aufgezeichnet
- Berechnung der Verstärkung Ks = $\Delta x / \Delta y$
- Die senkrechte Linie wird so weit verschoben, bis die beiden Flächen F1 und F2 gleich groß sind.(eine gute Abschätzung genügt)

- Ablesen der Summenzeitkonstanten T_{Σ}
- Anhand der folgenden Tabellen werden die Regelparameter für je nach angestrebtem Regelverhalten bestimmt:

Standardeinstellung:

	Verstärkung	Nachstellzeit	Vorhaltzeit
Reglertyp	Кр	Tn	Td
Р	1/Ks	OFF	OFF
PI	0,5/Ks	0,5* Τ _Σ	OFF
PID	1/Ks	0,66* Τ Σ	0,167* Τ Σ

schnelle Regelung:

Reglertyp	Verstärkung Kp	Nachstellzeit Tn	Vorhaltzeit Td
PI	1/Ks	0,7* Τ Σ	OFF
PID	2/Ks	0,8* Τ Σ	0,194* Τ _Σ

1.22.5 Ermittlung der Streckenverstärkung Ks

Die Streckenverstärkung K_s gibt an, wie die Regelstrecke auf eine Änderung der Stellgröße (bei Typ 8049 IPC die Stellung des verbauten Ventils) reagiert.

Die Ermittlung des K_s-Faktors wird in der einschlägigen Literatur meist sehr theoretisch behandelt, weshalb sie anhand des Beispiels einer Temperaturregelung genauer erklärt wird (inkl. dem Umgang mit Einheiten). Das Menü zur Einstellung der Sprungfunktion ist in Abschnitt 0 beschrieben.

Beispiel: Temperaturregelung

- Den Stellwert der unteren Position (*Position1*) eingeben (z.B. 40%)
- Den Stellwert der oberen Position (*Position2*) eingeben (z.B. 60%)

Um optimale Regelparameter zu ermitteln, sollte das Sprungsignal im Bereich des später zu erwartenden Arbeitspunkts des Reglers liegen.

• Mit Step kann zwischen beiden Positionen gewechselt werden. Dabei ist die Änderung des Istwerts mit einem geeigneten Messmittel mitzuschreiben

In diesem Beispiel ergeben sich folgende Werte:

Vor Sprungsignal	Nach Sprungsignal	Änderung
Position1 = 40%	Position2 = 60%	Sprung von 20%
X1 = 30°C	X2 =60°C	Temperaturerhöhung von 30°C

Die Streckenverstärkung K_s kann damit aus der prozentualen Verstärkung K_% ermittelt werden:

 $K_{\%} = \Delta x / \Delta y$ $K_{\%} = (60^{\circ}\text{C} - 30^{\circ}\text{C}) / (60\% - 40\%)$ $K_{\%} = 30^{\circ}\text{C} / 20\%$ $K_{\%} = 1,5 \text{ °C} / \%$

Bei einer Änderung der Ventilöffnung um 1% ist eine Temperatursteigerung von 1,5°C zu erwarten.

Man sieht an diesem Wert, dass die Streckenverstärkung einheitenbezogen ist. Es ist daher wichtig, auch den Messbereich des Istwertes einheitenbezogen richtig einzustellen.

Da sich K_s auf 100% Stellwertänderung bezieht, ist dieser Wert noch mit 100 zu multiplizieren:

$$K_s = K_{\%} * 100 = 1,5^{\circ}C / \% * 100\% = 150$$

Mit diesem Wert (150) können die Regelparameter Kp, Tn und Td entsprechend der aufgeführten Verfahren ermittelt werden.

1.23 Montage bei Linearantrieben

1.23.1 Montage des Anbausatzes

Der Anbausatz wird an der Oberseite des Ventilantriebs befestigt. Je dach Ventilbauart kann diese Befestigung unterschiedlich sein.

Die Ankoppelung des Stellungsreglers an das Ventil erfolgt über einen mechanischen Anschlag der ventilseitig vorzusehen ist und mit der Ventilspindel verbunden sein muss. Auf der planen Oberfläche des Anschlags liegt die Rückführ-Taststange mit Rückstellfeder auf, die die Ventilstellung an den Regler weitermeldet.

Der Anschlag muss so eingestellt sein, dass das Maß "X", gemessen von der Oberkante des Adapterrings bis zur Auflagefläche bei nicht druckbetätigtem Ventil, erreicht wird (siehe unten). Er muss nach der Einstellung durch Kontern oder Verklebung gesichert werden.

Anmerkung: je nach Antriebskonstruktion wird möglicherweise keine optische Sichtanzeige benötigt (z.B. bei Membranantrieben mit Säulenaufbau). In diesem Fall wird lediglich der Adapterring direkt auf dem Ventilantrieb befestigt; das Einstellmaß "X" bleibt jedoch gleich, d.h. die Taststange reicht in den Antrieb hinein.

Das Maß "X" ist nicht konstant, sondern hängt vom Ventilhub ab:

Bei federschließenden Antrieben gilt:

X in mm = 50,8 + Hub/2

und bei federöffnenden Antrieben:

X in mm = 50,8 - Hub/2

1.23.2 Montage des Stellungsreglers

- Stellungsregler inkl. Taststange und Rückstellfeder auf den Anbausatz aufsetzen.
- Am Befestigungsring seitlich die 3 Gewindestifte festziehen.
- Ausgang "Y1" mit dem Ventilantrieb verbinden.

Achten Sie darauf, dass diese Verbindung dicht ist, weil dies sonst dazu führt, dass die Magnetventile im Stellungsregler permanent arbeiten.

- Zuluft (Anschluss "P") anschließen.
- Deckel des Stellungsreglers öffnen und elektrische Verbindungen herstellen.
- Justierung des Stellungsreglers durchführen.
- Deckel des Stellungsreglers schließen.

Demontage des Stellungsreglers sinngemäß in umgekehrter Reihenfolge durchführen.

1.24 Montage bei Schwenkantrieben

Der digitale Stellungsregler für Schwenkantriebe ist für den Anbau auf Schwenkantriebe mit Anbausatz nach VDI/VDE 3835 konzipiert.

Bei Doppelwirkenden Antrieben:

- 1. Ventil in die "geschlossen" Stellung fahren.
- Kupplung(1) drehen, bis der Drehwinkelanzeiger(2) auf 0° steht.

Bei Einfachwirkenden Antrieben "Feder schließt":

- 1. Antrieb <u>nicht</u> mit Druckluft beaufschlagen.
- Kupplung(1) drehen, bis der Drehwinkelanzeiger(2) auf 0° steht.

Bei Einfachwirkenden Antrieben "Feder öffnet":

- 1. Antrieb nicht mit Druckluft beaufschlagen.
- Kupplung(1) drehen, bis der Drehwinkelanzeiger(2) auf 90° steht.

- 3. Stellungsregler auf die Konsole des Anbausatzes aufsetzen. Die Kupplung muss dabei in die Nut des Antriebs (A) einrasten.
- 4. Stellungsregler mit Schrauben(4) und Scheiben(5) an der Konsole befestigen.
- 5. Gewindestifte der Kupplung (1) und des Ringes (2) niemals lösen!
- 6. Pneumatische Verbindungen zwischen Stellungsregler und Antrieb herstellen.
 - Bei einfachwirkenden Antrieben: Ausgang Y1
 - Bei doppelwirkenden Antrieben: Ausgang Y1 und Y2

Achten Sie darauf, dass diese Verbindung dicht ist, weil dies sonst dazu führt, dass die Magnetventile im Stellungsregler permanent arbeiten.

- 7. Deckel des Stellungsreglers öffnen und elektrische Verbindungen herstellen.
- 8. Zuluft (Anschluss "P") anschließen.
- 9. Justierung des Stellungsreglers durchführen.
- 10. Deckel des Stellungsreglers schließen.

Demontage des Stellungsreglers sinngemäß in umgekehrter Reihenfolge durchführen.

1.25 Wartung und Instandhaltung

Das Gerät ist wartungsfrei.

An der Rückseite des metallischen Gehäuseunterteils befindet sich ein Filtereinsatz, der bei Bedarf herausgeschraubt und gereinigt bzw. ersetzt werden kann.

Die Wartungsvorschriften von eventuell vorgeschalteten Zuluft-Reduzierstationen sind zu beachten.

1.26 Entsorgung

Das Gerät und die Verpackung müssen entsprechend den einschlägigen Gesetzen und Vorschriften im jeweiligen Land entsorgt werden.

1.27 Abmessungen und Gewichte

Gewicht ca. 1 kg

2 GBUSA Operating Instructions (English)

2.1 General

In addition to the instructions in this publication, the generally applicable safety and accident prevention regulations must be observed.

If the information contained in this document is not sufficient in any case, our service department will be pleased to provide you with further information.

Please read this document carefully before installation and commissioning.

2.2 Adjustment

The positioner can be mounted on any pneumatic control valve with strokes from 3 to 28 mm (optionally 50 mm) ("top-mounted").

To simplify mounting on the valve, various mounting kits are available that include the necessary mounting parts for connecting the valve actuator and the positioner, a feedback push rod for the valve stroke and, if required, an optical valve position indicator.

As the positioner is automatically adapted to the valve stroke, a standard mounting kit is used which can, however, be adapted to the mechanical conditions of the valve on the actuator side if required. All parameters of the 8049 IPC and the most important parameters of the 8049-4 can be set directly on the device via a menu. It is also possible to set all parameters using the freely available "DeviceConfig" configuration software.

2.3 Intended use

The positioner with integrated process controller type 8049 IPC is a controller for positioning pneumatically controlled actuators. It is intended for attachment to linear and rotary actuators in accordance with the instructions in these operating instructions.

The product may only be used for the applications described in these operating instructions or in the data sheets. Any other use is considered as improper use.

2.4 Laws and regulations

The legal regulations applicable in the respective country must be complied with during connection, installation and commissioning.

These are for example:

The Ordinance on Industrial Safety and Health (Germany)

2.5 General safety instructions

The appliance may only be installed and commissioned by qualified persons who are familiar with the installation, commissioning and operation of this product.

Qualified technicians within the meaning of these installation and operating instructions are persons who are able to assess the work assigned to them and recognise potential hazards due to their technical training, knowledge and experience as well as their knowledge of the relevant standards.

Any hazards that could be caused in the control valve by the process medium, the operating pressure, the signal pressure or moving parts are to be prevented by taking appropriate action.

If the supply air pressure in the pneumatic actuator results in impermissible movements or forces, the supply air pressure must be limited by a suitable reducing station.

The exhaust air opening must not be closed on site.

Proper transport and storage of the appliance is assumed.

2.6 Functionality

The integrated process positioner type 8049 IPC is based on the positioner type 8049-4 version 6 and can be mounted on any pneumatic control valve with strokes from 3.5 to 50 mm or on rotary actuators with an angle of rotation of up to 180° ("top-mounted"). The function as an integrated process controller can be deactivated so that the Type 8049 IPC operates as a standard positioner Type 8049-4 (where necessary, a distinction is made between the two types in these instructions).

Local control tasks can be solved with the process controller type 8049 IPC; the sensor for the process variable is connected directly to the process controller for this purpose.

The controller operates as a PID controller with the following transfer equation:

$$y - y_0 = \frac{100\%}{X_P[\%]} \cdot \left[(w - x) + \frac{1}{T_N} \int (w - x) dt + T_V \frac{d(w - x)}{dt} \right]$$

These are:

Quantity	Meaning	Remark
W	Setpoint	
Х	Process value	
CP	Proportional factor	Determines the proportional (P) part of the control function.
		Hereinafter referred to as Kp.
Y ₀	Point of operation	Can be set on P or PD controllers to minimise the control
		difference. The point of operation corresponds to the control
		output for a zero control difference.
T _N	Integral time	Determines the integral (I) part of the control function.
Tv	Derivative time	Determines the differential (D) part of the control function.

2.7 Technical data

Nominal stroke	3 - 28 / 3 - 50 mm
Load voltage	2,5 V (125Ω@20mA)
Permissible ambient temperature	-10 to +75°C
Regelgröße (Istwert)	0/4 - 20 mA, Pt100 (2 oder 3-wire)
Controlled variable (actual value)	via keyboard or
	0/4 - 20 mA; 0/2 - 10 V
Control behaviour	P (with operating point y0)
	PD (with operating point y0)
	PI
	PID
Accuracy	\leq 0,5% from the final value
Alaram output	absolute direct/inverse
	relative direct/inverse
	Band direct/inverse
Power supply, electrical	24 VDC max. 10 W
Adjustment of stroke and zero point	self-adapt
Configuration	Directly on the display or via PC software
Power supply, pneumatic	max. 6 bar
Unthrottled air flow rate *	40 NI/min
Stationary air consumption	< 0,06 NI/min
System leakage	< 0,01 NI/min
Air quality according to ISO 8573-1:	
max. solids size and density	Class 5
oil content	Class 4
Pressure dewpoint	Class 3
	min. 20K (36°F) below ambient temperature
Actuating gas	Compressed air or non-flammable gases (nitrogen,
	CO2,)
Attachment to actuator	Via standardised mounting kits (also with optical stroke
	indicator)
Pressure connection	G 1/8"
Max. Connection cross-section	1,5mm ²
Protection class according to EN 60529	IP 65

* at 5 bar supply air pressure

2.8 Air supply

The supply air is connected to the "P" input (G1/8" / NPT1/8").

It must **<u>not</u>** reach a pressure of more than 6 bar, otherwise a malfunction is to be expected.

Air quality:

Non-lubricated industrial air, solids content < 30μ , pressure dew point 20 K below the lowest ambient temperature.

2.9 Electrical connections

The electrical connection may only be carried out by qualified persons.

Always observe the relevant national safety regulations (e.g. VDE 0100) when installing, commissioning and operating the devices.

All work may only be carried out in a de-energised state.

Failure to observe the relevant regulations may result in serious personal injury and/or damage to property.

The positioner requires an external power supply (24 VDC, filtered, ripple 10% max.). The average current consumption is a maximum of 300mA (600mA for double-acting). As higher peak currents flow at the moment of switch-on, a slow-blow fuse of at least 1A (double-acting 2A) must be provided.

The power supply should be connected via a second cable that is separate from the signal lines.

After opening the cover of the positioner, the screw terminals of terminal block A (5) and terminal block B (1) are accessible for the individual connections.

The maximum connection cross-section is 1.5 mm²

Unused cable glands must be sealed with a suitable sealing plug to maintain the degree of protection (IP65).

- 1 Terminal block B
- 2 Interface DeviceConfig
- 3 Button "IN"
- 4 Button "SEL"
- 5 Terminal block A
- 6 Button "OUT"

The actuator must be earthed. An earthing screw is located on the outside of the housing and on the circuit board near the connection terminals.

Shielded cables must also be used.

2.9.1 **Connection examples**

Pt100 2-wire measurement

Positioner 8049 IPC

Pt100 3-wire measurement

recommended for longer distances

Positioner 8049 IPC

mA sensor

Positioner 8049 IPC

mA measuring transducer in 2-wire version (with internal sensor supply)

Positioner 8049 IPC

IPC Mode = IPC OFF or IPC Mode = LCD Only (mode of operation as 8049-4)

Positioner 8049 IPC

2.10 **Operation**

2.10.1 General notes on menu operation

The process controller type 8049 IPC and positioner 8049-4 can be set and parameterised via a menu on the display. The menu is called up by pressing and holding the "SEL" button for approx. 3 seconds; navigation in the menu is via the membrane keypad (alternatively via the pushbuttons inside the controller when the cover is open) with three operating elements:

3

The "IN" button is used to navigate upwards in the menu or to increment a value to be changed. Pressing and holding the button accelerates incrementating.

The "OUT" button is used to navigate downwards in the menu or to decrement a value to be changed. Pressing and holding the button accelerates decrementing.

The "SEL" button is used to perform an action (jump to a submenu, back to a higher-level menu or set a setting) corresponding to the selected menu line.

A menu is generally exited via the menu line "- back -", which takes you back to the higher-level menu (when exiting the main menu, you return to the main display). Inactivity when the menu is open (no pressing of the IN, OUT or SEL control elements for 20 minutes) or simultaneous pressing of IN and OUT for at least 0.5 seconds leads to the menu being exited directly back to the main display.

The *IPC param and Parameter menus* are password-protected by default. Password protection can be deactivated in the DeviceConfig configuration software.

Changed values and settings are only saved if the corresponding menu is exited via the "- back - " menu line.

2.10.2 Structure of a menu page

A menu page consists of a header (1), a page index (2) and the menu items (3). If a menu consists of more than three entries, this is indicated by a bar that shows the position of the currently selected area in the menu (4).

Pressing the "IN" button for the first menu entry causes the menu to roll over and the last menu entry is displayed.

Pressing the "OUT" button for the last menu entry causes the menu to roll over and the first menu entry is displayed.

Note: For a better overview, the complete menu is always shown in the chapters describing the individual menu pages, even if it has more than three entries. The bar is not displayed.

2.10.3 Display content 8049-4

Standard display:

The standard display is always active when the 8049 IPC process controller is in "IPC OFF" or "LCD only" mode, there is no error and no settings are currently being made. The device therefore functions purely as a 8049-4 position controller.

The current position in percent is displayed in large letters (1), and the current setpoint of the valve position is shown below (2). The top line describes the display content (3).

Display of error states:

If there is an error in the device, this is indicated by the error code (2). The first line contains a short description of the error code (1) and the third line contains additional information. For a detailed description of the error codes, see section 2.15.21.15.2

2.10.4 Display content 8049 IPC

Standard display:

The standard display is always active when the 8049 IPC process controller is in "IPC ON" mode, there is no error and no settings are currently being made.

The current actual value (X) of the sensor in units is shown large across the entire display. (1)

The current setpoint value (W) in units is at the top right. (2)

The scaling of the measured value and the number of decimal places can be set in the menu.

During manual setpoint specification (2.13.2), the control value of the positioner is displayed at position 2.

An active IPC alarm (2.13.8) is symbolized by the flashing display of the bell (3).

The display of error messages is identical to the 8049-4.

2.11 First commissioning 8049 IPC

To ensure safe and correct operation of the 8049 IPC during initial commissioning, at least the following parameters must be set:

- Type of setpoint signal (see section 2.13.2)
- Type of actual value acquisition (see section 2.13.3)
- Value range of the actual value acquisition (see section 2.13.4)
- Direction of action of the control signal (see section 2.14.4)
- Change IPC mode to ON (see section 1.13.5)

The IPC mode may only be set to ON at the end of the parameter settings, as this is where the control of the process variable begins.

2.12 Main menu navigation

Main Menu

Menu main	0
IPC param	
Parameter	
Info	
Error info	
Settings	
- back -	

Entry	Description
IPC param	Submenu for setting all parameters of the 8049 IPC
	Password-protected (default password: 1)
Parameter	Submenu for setting all parameters of the positioner type 8049-4
	Password-protected (default password: 1)
Info	Submenu with information on self-adaption, firmware version, serial number and
	operating hours
Error info	Submenu with information on errors that have occurred and maintenance information
Settings	Submenu for changing the password, performing a factory reset and starting self-
	adaption
- back -	Exit menu navigation

2.13 Menu navigation IPC

IPC param – Parameter setting IPC

All settings for the integrated process controller **type 8049 IPC** are made in the *IPC param* menu and the associated submenus.

IPC param	34
PID	
Setpoint	
Sens signal	
Sens scale	
IPC mode	
Filter	
Step func	
Alarm	
Cycle time	
Digits	
Work dir	
Err action	
SW version	
- back -	

Entry	Description
PID	Submenu for setting the PID parameters
Setpoint	Submenu for setting the setpoint source of the IPC
Sens signal	Submenu for setting the sensor input
Sens scale	Submenu for entering the value range of the IPC
IPC mode	Submenu for switching the IPC on or off
Filter	Submenu for activating/deactivating the additional filter for the actual value of the IPC
Step func	Submenu for setting and executing the step function (e.g. determining the distance gain
	Ks, see section 2.13.7)
Alarm	Submenu for setting the IPC alarms
Cycle time	Submenu for setting the cycle time of the IPC
Digits	Submenu for setting the decimal places used
Work dir	Submenu for setting the operating direction of the IPC
Err actions	Submenu for setting the behaviour of the IPC in the event of various errors
SW version	Submenu for displaying the firmware version of the IPC
- back -	Return to the menu Menu main

2.13.1 **PID – Setting the control parameters**

PID	4	40
Кр		
Tn		
Td		
YO		
– back –		

Entry	Description
Кр	Submenu for setting the proportional gain
Tn	Submenu for setting the reset time
Td	Submenu for setting the pre-hold time
Y0	Submenu for setting the operating point (with P or PD controller)
- back -	Return to the IPC Param menu

2.13.1.1 Set Kp

Menu for setting the proportional gain Kp

Set	Кр	41	1
	1 0		
	1.0		
-	back -		

Range of values	1.0 – 100.0
Standard value	1.0

A change to the value of Kp takes effect immediately; it is only saved when the menu is exited via "- back - ".

2.13.1.2 Param Tn

Menu for activating/deactivating the integral component of the controller and setting the reset time.

Param Tn	42	 Set Tn	44
o Active			
• Inactive		3.0s	
- back -		– back –	

Entry	Description
Active	I component is activated, call up the submenu for setting the reset time Tn
Inactive	I-portion is deactivated
- back -	Return to the PID menu

Range of values	1.0s – 4999.0s
Standard value	3.0s

A change to the value of Tn takes effect immediately; it is only saved when the menu is exited via "- back - ".

2.13.1.3 Param Td

Menu for activating/deactivating the differential component of the controller and setting the derivative time.

Param Td	43	│	Set	Td	45
o Active					
• Inactive				3.0s	
- back -			-	back -	

Entry	Description
Active	D-component is activated, call up the submenu for setting the pre-hold time Td
Inactive	D-component is deactivatedD-Anteil ist deaktiviert
- back -	Return to the PID menu

Range of values	1.0s – 2999.0s
Standard value	3.0s

A change to the value of Td takes effect immediately; it is only saved when the menu is exited via "- back - ".

2.13.1.4 Set Y0

Menu or setting the operating point Y0 (only used with P and PD controllers)

Range of values	0.0% – 100.0%
Standard value	50.0%

A change to the value of Y0 takes effect immediately; it is only saved when the menu is exited via "- back - ".

2.13.2 Setpoint – Setpoint source / setting the internal setpoint

Menu for setting the type of setpoint signal.

If the internal setpoint is used, it must be specified in units of the process variable (see section 2.13.4).

Setpoint	54		Intern set	55
o Internal		├	11100111 000	
oExt 4-20mA			0 0	
oExt 0-20mA			0.0	
– back –			- back -	

Entry *	Description
Internal	Internal setpoint specification, call up the submenu for setting the internal setpoint
Ext 4-20mA	External setpoint specification, signal range 4-20mA, connection terminals 6 and 7
Ext 0-20mA	External setpoint specification, signal range 0-20mA, connection terminals 6 and 7
- back -	Return to the IPC Param menu

*When using a positioner 8049-4 with voltage input for setpoint specification, this is shown accordingly in the menu (Internal/ext. 2-10 V/ext. 0-10 V)

Internal set: - Internal setpoint specification directly on the IPC

Range of valuesValue min to Value max (see section 1.13.4)Standard value(Value max – Value min)/2

A change to the value of the internal setpoint takes effect immediately; it is only saved when the menu is exited via "- back -

2.13.3 Sensor sig – Selection of the actual value signal

Sensor sig	36
04-20 mA	
00-20 mA	
0 PT100	
- back -	

Entry	Description
4-20 mA	Actual value detection by means of current signal, signal range 4-20mA, Connection terminals 20 and 21
0-20 mA	Actual value detection by means of current signal, signal range 0-20mA, Connection terminals 20 and 21
PT100	Actual value recording via PT100, connection terminals 22, 23 and 24
- back -	Return to the IPC Param menu

For wiring examples see 2.19

2.13.4 Sens scale – Scaling the value range

Menu for setting the value range "in units" of the actual value recording.

Example pressure control: The actual value is recorded with a pressure sensor with a measuring range of 0 - 6 bar, resulting in the following settings: Value min =0, Value max =6

Entry	Description
Value min	Call up the submenu for setting the minimum actual value
Value max	Call up the submenu for setting the maximum actual value
- back -	Return to the IPC Param menu

Value min:

Range of values	-9999.9 – Value max.
Standard value	0.0

Value max:

Range of values	Value min. – 9999.9
Standard value	100.0

2.13.5 IPC mode

IPC mode	35
o ON	
• OFF	
o LCD only	
– back –	

Entry	Description
ON	IPC is activated
OFF	IPC is deactivated and works as standard controller 8049-4.
	A deactivated IPC is indicated on the display by an alternating display (standard display 8049-4 and message "IPC IS OFF").
LCD only	IPC is deactivated and works as standard controller 8049-4.
	In contrast to the "OFF" menu item, the deactivated IPC is not shown by an alternative display.
	Setting if a standard controller 8049-4 with additional display is required.
- back -	Return to the IPC Param menu

2.13.6 Filter – Filter of the Is value signal

Entry	Description
ON	Pre-filtering of the actual value signal is activated
OFF	Pre-filtering of the actual value signal is deactivated
- back -	Return to the IPC Param menu

2.13.7 Step func - Jump function

Menu for setting and executing a step in the control value. Can be used when determining the distance gain (see section 2.22.5).

Entry	Description
Position 1	Call up the submenu for setting the first position of the jump function
Position 2	Call up the submenu for setting the second position of the jump function
Step	Each press of the SEL button toggles between position 1 and 2 As long as the step function is active, the setpoint is not controlled.
- back -	Return to the IPC Param menu, control returns to the last valid setpoint value

Step pos 1:

Step positi	
Range of values	0.0% - 100.0%
Standard value	40.0%

Step pos 2:		
Range of values	0.0% - 100.0%	
Standard value	60.0%	

2.13.8 Alarm

_

Alarm	47	
o ON		
• OFF		
– back –		

Entry	Description
ON	IPC alarms are activated, call up the submenu for configuring the alarms
OFF	IPC alarms are deactivated
- back -	Returning to the IPC Param menu

2.13.8.1 Alarm conf

Menu for setting the alarm type, limit values and hysteresis for determining the IPC alarms. Hysteresis and limit values are specified "in units" of the process variable (see section 2.13.4).

Entry	Description	
Setpt rel	Call up the submenu for setting the relative threshold value (used for relative alarm	
	types and band alarms)	
Setpt abs	Call up the submenu for setting the absolute threshold value (used for absolute	
	alarm types)	
Hysteresis	Call up the submenu for setting the alarm hysteresis (application independent of	
	the alarm type)	
Alarmtype	Call up the submenu to define the alarm type	
- back -	Return to the Alarm menu	

Setpt rel:

Range of values	Value min – Value max (specified, according to menu "Sens scale", chapter 1.13.4)
Standard value	5.0

Setpt abs:

Range of values	Value min – Value max (specified, according to menu "Sens scale", chapter 1.13.4)
Standard value	90.0

Hysteresis:

Range of values	0.0 – 100.0
Standard value	1.0

2.13.8.1.1 Alarmtype

Menu for setting the alarm type. Depending on the selection, the parameters *Setpt rel* and *Hysteresis* or *Setpt abs* and *Hysteresis* are used to analyse the alarm. An active alarm is indicated by a flashing bell in the main view of the IPC.

A	Larm	type	52
٠	Band	l	
0	Rel	low	
0	Rel	high	
0	Abs	low	
0	Abs	high	
	- ba	ack -	

Entry	Description
Band	
Rel low	
Rel high	Selecting the alarm type (see section 2.17 for an explanation)
Abs low	
Abs high	
- back -	Return to the Alarm Config menu

2.13.9 Cycle time

Cycle time	59
o 25 ms	
• 50 ms	
o100 ms	
o 200 ms	
o 500 ms	
- back -	

Entry	Description
25 ms	IPC cycle time is 25 ms
50 ms	IPC cycle time is 50 ms
100 ms	IPC cycle time is 100 ms
200 ms	IPC cycle time is 200 ms
500 ms	IPC cycle time is 500 ms
- back -	Return to the IPC Param menu

2.13.10 Digits - Decimal places

Menu for setting the displayed decimal places when displaying the internal setpoint specification (see section 2.13.2), minimum and maximum value of the input signal (see section 2.13.4) as well as relative and absolute threshold value and hysteresis of the alarm function

Digits			60		
0	0				
0	1				
٠	2				
	_	back	-		

Entry	Description
0	No decimal place
1	One decimal place
2	Two decimal places
- back -	Return to the IPC Param menu

2.13.11 Work dir - Direction of action

D	61	
٠	direct	
0	invers	
	– back –	

Entry	Description
direct	Control signal acts directly
invers	Control signal acts inversely
- back -	Return to the IPC Param menu

2.13.12 Errror act - Error actions

Error act	62
Com timeout	
Setpt min	
Setpt max	
Actval min	
Actval max	
– back –	

Entry	Description
Com timeout	Submenu for setting the action in the event of a communication timeout to the IPC module
Setpt min	Submenu for setting the action when the setpoint falls below the permissible minimum value
Setpt max	Submenu for setting the action when the permitted maximum value of the setpoint is exceeded
Actval min	Submenu for setting the action when the actual value falls below the permissible minimum value
Actval max	Submenu for setting the action when the permitted maximum value of the actual value is exceeded
- back -	Return to the menu "IPC Param"

2.13.13 Error action submenus

For each of the errors listed in section 2.13.12, the same actions are available for selection when the error occurs. The actions can be set individually for each error and independently of the selected actions for other errors..

Entry	Description
Drain	The actuator is drained in the event of a fault
Fill	The actuator is filled in the event of a fault
Position	Defines the control value to the 8049-4 that is output in the event of an error. The setting is made via the "Error pos" submenu.
Inactive	No separate action is taken in the event of an error (default setting)
- back -	Return to the IPC Param menu

Error position:

Range of values	0.0% – 100.0%
Standard value	0.0%

2.13.14 SW Version - Software version

Display of the software version of the IPC extension module.

SW	SW version		
	1 01 00		
-	- back -		

2.14 Menu navigation 8049-4

The most important settings for the positioner **type 8049-4** can be made in the "Parameters" menu and the associated submenus.

Parameter	1
Sig range	
Working dir	
Safety pos	
Char curve	
Shut off	
Stroke lim	
Hysteresis	
- back -	

Entry	Description			
Sig range	Submenu for setting the input signal range			
Working dir	Submenu for setting the effective direction of the input signal			
Safety pos	Submenu for setting the safety position			
Char curve	Submenu for setting the characteristic curve			
Shut off	Submenu for setting the tight-closing function			
Stroke lim	Submenu for setting the electronic stroke limiter			
Hysteresis	Submenu for setting the accuracy of the control hysteresis			
- back -	Return to the menu "Menu main"			

2.14.1 Sig range - Setpoint signal range

Sig		range		4	
•	4	_	20	mA	
0	0	-	20	mΑ	
0	4	_	12	mA	
0	12	-	20	mA	
0	va	ar	iab	le	
	_	ba	ack	_	

Entry *	Description
4-20 mA	Range of the setpoint signal is 4-20mA
0-20 mA	Range of the setpoint signal is 0-20mA
4-12 mA	Range of the setpoint signal is 4-12mA (for split-range applications)
12-20 mA	Range of the setpoint signal is 12-20mA (for split-range applications)
variable	Submenu for setting any range of the setpoint signal
- back -	Return to the Parameters menu

*If a voltage signal is used to set the setpoint, this is displayed accordingly in the menu (2-10 V/0-10 V/2-6 V/6-10 V/variable)

2.14.1.1 Variable – Variable setting of the signal range

Entry	Description
bottom	Submenu for setting the lower limit of the setpoint signal
top	Submenu for setting the upper limit of the setpoint signal
- back -	Return to the Sig range menu

Bottom:

Range of values	0.0 - Тор
Standard value	4.0

Top:

1001	
Range of values	Bot – 20.0
Standard value	20.0

2.14.2 Work dir – Direction of action of the control signal

Work dir	8
•signal op	
o signal cl	
– back –	

Entry	Description
signal op	rising signal opens
signal cl	rising signal closes
- back -	Return to the Parameters menu

2.14.3 Safety pos - Safety position

Safety pos	9
• spring cl	
o spring op	
- back -	

Entry	Description
spring cl	Safety position: Spring closes
spring op	Safety position: Spring opens
- back -	Return to the Parameters menu

2.14.4 Char curve - Control characteristic curve

Menu for selecting the control characteristic. This setting must be made if the positioner is mounted on a different kind of valve. The characteristic curve can be selected using the valve nameplate.

Char curve	10
• Seat valve	
o GS 15	
o GS 20-40	
o GS 50-80	
oGS 100-125	
o GS 150-250	
o SPV	
o KSV	
o variable	
- back -	

Entry	Description
Seat valve	Standard characteristic curve for poppet valves
GS 15	Standard characteristic curve for sliding gate valves DN 15
GS 20-40	Standard characteristic curve for sliding gate valves DN 20-40
GS 50-80	Standard characteristic curve for sliding gate valves DN 50-80
GS 100-125	Standard characteristic curve for sliding gate valves DN 100-125
GS 150-250	Standard characteristic curve for sliding gate valves DN 150-250
SPV	Standard characteristic curve for segment plate valves
KSV	Standard characteristic curve for ball sector valves
variable	Submenu for any setting of the steep load (electronic and mechanical, see section
	2.14.5)
- back -	Return to the Parameters menu

2.14.5 Lift load - Steep branch

The "steep load" is a way of quickly travelling through part of the lower stroke range.

In sliding gate valves, this function is used to move quickly through the overlap range and to ensure that the flow starts at 5 mA regardless of the nominal size.

By default, the steep load is set using the control characteristic. This menu is only required for special settings.

Entry	Description
electrical	Submenu for setting the required signal value at which the stroke specified under
	"mechanical" is reached
mechanical	Submenu for setting the stroke that is reached at the control signal value specified under
	"electrical"
- back -	Return to the Parameters menu

Electrical:

Range of values	0.0% - 100.0%
Standard value	0.0%

Mechanical:

Range of values	0.0% - 100.0%	
Standard value	0.0%	

2.14.6 Shut off – Tight-closing function

The tight-closing function at the top causes the actuator to be completely filled above this control signal

The tight-closing function at the bottom causes the actuator to be completely vented below this control signal.

Shut off	14	4
• active		
o inactive		
– back –		

Entry	Description
active	Tight-closing function is activated
	Setting the lower and upper tight-closing range
inactive	Tight-closing function is deactivated
- back -	Return to the Parameters menu

2.14.6.1 Active

Entry	Description
bottom	Submenu for setting the upper tight-closing range
top	Submenu for setting the lower tight-closing range
- back -	Return to the Shut off menu

Bottom:

Range of values	0.0% – Top	
Standard value	1.0%	

Top:

Range of values	Bot – 100.0%
Standard value	98.5%

2.14.7 Stroke lim – Stroke limitation

The upper stroke limit defines the maximum value of the control curve. The lower stroke limit defines the minimum value of the control curve.

Entry	Description
bottom	Submenu for setting the lower value of the electronic stroke limiter
top	Submenu for setting the upper value of the electronic stroke limiter
- back -	Return to the Stroke parameters menu

Limit bot:

Range of values	0.0% – Тор
Standard value	0.0%

Limit top:	
Range of values	Bot – 100.0%
Standard value	100%

2.14.8 Hysteresis - Control hysteresis

The control hysteresis specifies how precisely the setpoint is to be adjusted.

The controller stops within a band that is defined by the set value in the positive and negative direction around the theoretical setpoint. The percentage value refers to the stroke that was determined during self-adaption.

Entry	Description
0.2%	Hysteresis 0.2%
0.4%	Hysteresis 0.4%
0.6%	Hysteresis 0.6%
variable	Submenu for setting any hysteresis
- back -	Return to the Parameters menu

Variable:

Range of values	0.1% - 2.0%	
Standard value	0.4%	

2.15 General menu navigation

2.15.1 Information

The Info menu and its submenus display information about self-adaption as well as the serial number, software version and operating hours of the positioner.

Info	21
Adaption	
Serial Nr	
SW Version	
Op hours	
– back –	

Entry	Description
Adaption	Submenu with information on self-adaption
Serial Nr	Display of the serial number of the positioner main board
SW Version	Display of the SW version of the positioner main board
Op hours	Display of operating hours of the positioner main board
- back -	Return to the menu "Menu main"

2.15.1.1 Adaption – Measurement values of the self-adaption

The "Adaption" menu contains all relevant information for self-adaption (see section 2.18)

Entry	Description
valvestroke	Display of valve lift
top	Display of the position of the upper measuring point (in % of the total possible range of the path detection)
bottom	Display of the position of the lower measuring point (in % of the total possible range of the path detection)
time fill	Display of the filling time of the actuator
time drain	Display of the emptying time of the actuator
counter	Display of the number of self-adaption performed
- back -	Return to the Adaptation menu

2.15.1.2 Serial Nr – Motherboard serial number

Display of the serial number of the positioner main board.

Serial nr	29
S0800000	
90649832	
– back –	

2.15.1.3 SW Version - Software version

Display of the SW version of the positioner main board

SW version	30
01.03.0	
- Dack -	

2.15.1.4 Op hours - Operating hours

Display of the operating hours of the positioner main board.

Op hours	31
6.7h	
– back –	

2.15.2 Error Info

The "Error Info" menu and the associated submenus contain more detailed information on errors that have occurred. A distinction is made between error classes E01, E02 and E03 (see also section 2.20), messages according to NAMUR (maintenance required, operation outside of specification, function check) and errors that affect the IPC.

The number of existing error information items is displayed, in the respective submenus you can navigate to the previous/next error information using the IN/OUT buttons, at the end of each error list (marked with " - back - ") you can return to the Error Info menu. The error list is updated cyclically, if there is no error message, this is also indicated by a message.

Entry	Description
E01	Information on all errors of error class E01 of the positioner 8049-4
E02	Information on all errors of error class E02 of the positioner 8049-4
E03	Information on all errors of error class E03 of the positioner 8049-4
	Information on all conditions of the 8049-4 positioner that require maintenance
?	Information if the 8049-4 positioner is operated outside its specification
S	Information on all states of the 8049-4 positioner that require a function check
IPC	Information on all errors of the integrated process controller (8049 IPC)

2.15.3 Settings

Self adapt Factory rst	2
Factory rst	
Change pass	
- back -	

Entry	Description	
Self adapt	Submenu for performing self-adaption	
Factory rst	Submenu for performing the factory reset	
	password protected (default password: 1)	
Change pass	Submenu for changing the password	
Ada restore	Submenu for restoring the last valid self-adaption	
	This menu item is only displayed if a self-adaption fails and a previous, valid self-	
	adaption exists.	
- back -	Return to the "Menu main" menu	

2.15.3.1 Self adapt – Start the self-adaption

Menu for starting a self-adaption. This must be confirmed again after selection in the *Settings* menu (YES), the display changes to show the progress of the self-adaption. Once it is finished, you return to the *Settings* menu.

If the starting of the self-adaption is not confirmed (NO), you will automatically return to the Settings menu.

		95	ō
Self	adapt		
NO			
YES			

2.15.3.2 Factory rst – Start the factory reset

Menu for performing a factory reset. This must be confirmed again after selecting it in the *Settings* menu and entering the password (YES). If the factory reset is not confirmed (NO), the system automatically returns to the *Settings* menu.

The factory reset resets all settings of the 8049-4 and the IPC to the delivery state. The default values of the individual parameters used are specified in the respective chapters of the menu navigation. In menus in which a selection is made, the default selection is marked with the symbol \bullet .

Maintenance data is not affected by the factory reset and remains intact.

2.15.3.3 Change pass

Menu for changing the password. The default password is "1". To change the password, first enter the current password and then the new password. If the current password is entered incorrectly, the password change process will be canceled and you will return to the *Settings* menu.

This menu is only displayed if the use of a password is enabled in the DeviceConfig configuration software (default: enabled).

2.15.3.4 Ada restore – Restoring the last valid self-adaption

Menu to restore the last valid self-adaption after a failed self-adaption. This menu is only displayed if a self-adaption was carried out again after a successful self-adaption but could not be completed successfully. Restoring the last valid self-adaption must be confirmed again after selection in the Settings menu (YES). If the process is not confirmed (NO), the system automatically returns to the Settings menu.

		88	3
Ada	restore		
YES			
NO			

2.16 Other operating modes

In addition to the standard functions (integrated process controller or positioner), there are additional operating modes of the 8049 IPC. To use these (access via IN or OUT buttons), the 8049 IPC must be supplied with electrical energy and connected to a compressed air supply.

2.16.1 Manual operation

To switch to manual operation, the controller must be "active". To do this, the controller must be supplied with electrical energy and connected to the compressed air.

To switch to "manual operation" mode, press the "OUT" button until the displayed bar has run through (approx. 3 seconds).

By pressing the "IN" button (air supply to the actuator) or "OUT" button (actuator is vented), the valve is opened or closed. If no button is pressed, the positioner seals the air in the actuator.

The manual operation is switched off by briefly pressing the IN and OUT buttons at the same time. Depending on the set IPC mode (see 2.13.5), the system is regulated again to the specified setpoint (IPC on) or the specified valve position (IPC off, LCD only).

	If the IN and OUT buttons are pressed for too long (more than approx. 2-3 seconds), the positioner goes into self adaption mode.
F So the high BM tasks and a spectral start in the high BM tasks and thehigh BM tasks and the high BM tasks and the high BM tasks	After a restart, the positioner is always in automatic mode.

Since no position control takes place in manual operation mode, this mode is suitable for diagnosing increased leakage in the system. To do this, the valve should be moved to approximately 50% opening using the manual operation.

The valve is then observed for about 10 minutes.

Valve behavior	Possible Cause	Fix
Valve moves against the safety position (pressure in the actuator increases)	 Too high supply pressure Internal leakage 	 Reduce supply pressure Contact repair and service department
Valve moves towards safety position (pressure in the actuator drops)	 Screw connections leaking Worn seals in the positioner or actuator 	 Check screw connections for leaks and tighten if necessary Contact the repair and service department

Every positioner has an internal leak. This causes the valve to slowly move into the safety position. A complete closing process takes between 30 minutes and several hours.

2.16.2 Manual setpoint

To switch to manual setpoint, the controller must be "active". To do this, the positioner must be supplied with electrical energy and connected to the compressed air. In addition, a valid self-adaption must be available.

To switch to the "manual setpoint" mode, press the "IN" button until the displayed bar has run through (approx. 3 seconds).

When setting the setpoint manually, the valve opening (0%-100% of the total stroke) is set using the two buttons IN and OUT. Pressing the IN button increases the setpoint, pressing the OUT button decreases it. This operating mode is shown in the main display of the 8049 IPC by showing the control signal "Y" instead of the setpoint "W".

The manual adjustment is switched off by briefly pressing the IN and OUT buttons at the same time. Depending on the set IPC mode (see 2.13.5), the system is regulated again to the specified setpoint (IPC on) or the specified valve position (IPC off, LCD only).

	If the IN and OUT buttons are pressed for too long (more than approx. 2-3 seconds), positioner goes into self-adaption (see section 2.18).			
[7] The encoder first care care appendix on the operation of the encoder first care care appendix of the operation interaction particular set of the operation is the operation interaction particular set.	After a restart, the positioner is always in automatic mode.			
Final section in the section and section with the distribution in the section in the section and section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section is a section in the section is a section in the section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in	Instead of the manual setpoint, the manual operation is activated by pressing the IN button if the positioner does not have a valid self-adaption.			

2.17 IPC Alarm

In the *IPC Param* \rightarrow *Alarm* menu, the alarm function of the 8049 IPC is activated or deactivated and the alarm type is specified. Depending on the alarm type selected, different parameters are used to determine the alarm. The parameters used as well as the trigger and reset values of the individual alarms are described in the table below. The following figure serves as an illustration.

Alarm type	Trigger threshold	Withdrawal threshold
Band	lower threshold:	lower threshold:
	Setpoint - Setpt rel – Hysteresis	Setpoint – Setpt rel + Hysteresis
	higher threshold	higher threshold:
	Setpoint + Setpt rel + Hysteresis	Setpoint +Setpt rel - Hysteresis
Rel low	Setpoint - Setpt rel - Hysteresis	Setpoint - Setpt rel + Hysteresis
Rel high	Setpoint + Setpt rel + Hysteresis	Setpoint +Setpt rel - Hysteresis
Abs low	Setpt abs - Hystersis	Setpt abs + Hysteresis
Abs high	Setpt abs + Hystersis	Setpt abs - Hysteresis

An IPC alarm can be displayed via the alarm output on the main board (adjustable with DeviceConfig)

2.18 Self-adaption

The adjustment (self-adaption) of the installed positioner is carried out in the factory. It is normally only required after a replacement or possibly after a repair of the valve.

After a new or replaced positioner has been mounted on the valve, it must be adjusted. There are two ways to start the self-adaption, the controller must always be supplied with electrical energy and compressed air:

Start the self-adaption via buttons on the main board

- Press both buttons "IN" and "OUT" on the positioner's main board (after 2-3 seconds)

Start the self-adaption via the Settings menu

Select the menu item Self adapt in the Menu Settings (see selection 1.15.3.1)

The valve opens and closes several times. During self-adaption, the positioner goes through various modes:

- "WAY OUT" Actuator is vented
- "WAY IN" Actuator is filled
- "SPEED" The speed of the valve is measured
- "OVERSHOOT" The dynamics of the valve are determined

After completion of the adaption and if it was was error-free, the controller automatically switches back to control mode (start via the IN and OUT buttons on the main board) or back to the *Settings* menu (start via the *Self adapt* menu item).

The self-adaption cannot be started via the "IN" and "OUT" buttons on the membrane keypad.

2.18.1 **Restoring the last valid self-adaption**

If the positioner has been successfully adapted and a subsequent self-adaption fails, the values of the last successful self-adaption can be restored. To do this, select the menu item Menu *settings* -> Ada *restore*. This menu item is only displayed if the conditions for restoring the last valid self-adaption are met (see also section 2.15.3.4)

2.19 Configuration with PC software DeviceConfig

In addition to setting all parameters of the 8049 IPC and the most important parameters of the 8049-4 via the menu, these can also be done via a PC interface and the configuration software "DeviceConfig".

It is <u>not</u> required for commissioning and operating the 8049 IPC or for adjusting it after a possible replacement unless special local settings were saved.

2.20 Error messages

The 8049 IPC and the 8049-4 positioner show error messages on the display. The Error info menu (see section 2.15.2) contains more detailed information on the error messages, and messages according to NAMUR NE107 are also displayed.

Since only one error message can be shown on the display, the display is prioritized (descending) according to the following table:

Code	Source of error	Meaning
NO ADAPTION E01 Code:90	8049-4 Positioner not adapted	Perform self-adaption
NO ADAPTION E01 Code:91	8049-4 Positioner not adapted	During self-adaption, the stroke determination failed. Possible remedy: - Check supply air pressure - Check whether the push rod is engaged
NO ADAPTION Second Code:92	8049-4 Positioner not adapted	 A stable position could not be reached during self-adaption. Possible remedy: Check the compressed air connection to the actuator for leaks Check the set screws for the controller assembly
NO ADAPTION E01 Code:93	8049-4 Positioner not adapted	Currently measured stroke is outside the stroke range of the last self-adaption. Possible remedy: - Check whether the push rod is engaged - Check the set screws for the controller assembly - Carry out the self-adaption
NO ADAPTION E01 Code:94	8049-4 Positioner not adapted	Adaption failed, the values of the last valid self- adaption were loaded (via menu Settings → "Ada restore", see section 2.15.3.4)
NO SIGNAL E02 Setpoint:00.0%	8049-4 Setpoint signal error	The control signal is outside the valid range This error is only diagnosed if the IPC is in "IPC OFF" or "LCD only" mode.
CONTROL ERR E03 Setpoint: 00.0%	8049-4 Control Error	The valve does not reach its target position

SENSOR MIN Setpoint:00.0%	8049 IPC	Actual value below minimum
SETPT MAX Setpoint:00.0%	8049 IPC	Setpoint maximum exceeded
SETPT MIN Setpoint:00.0%	8049 IPC	Setpoint value below minimum
TIMEOUT IPC E14 Setpoint:00.0%	8049 IPC	Communication to the IPC extension module is interrupted Possible remedy: - Check that the connection cable on the expansion module and the main board is properly plugged in

The "DeviceConfig" software can be used to specify which operating states and error messages should be output via the collective alarm output. By default, only the "control error" is active.

2.21 Troubleshooting

Error / Symptom	Possible cause(s)	method
Valve does not move	Control pressure is too low	 Increase control pressure to 4-6 bar.
Valve does not move to the stop (at 20mA)	 Control pressure is too low Regulator is not properly calibrated 	Increase control pressure.Perform self-adaption
In stationary automatic operation (constant setpoint), the solenoid valves switch continuously.*	 Leakage in the connection from the positioner to the actuator. Leakage in the actuator 	Find and eliminate leaks.Change the actuator seals.
Solenoid valves do not switch.	 Solenoid valves not properly connected Dirt (chips, particles) in the solenoid valves 	 Check the plug connection of the solenoid valves. Replace solenoid valves.
Valve does not open.	Sensor rod is loose.	Check the position of the sensor rod
Positioner doesn't work.	• Polarity of the control signal is reversed.	Check polarity of control signal
Valve positions are not approached correctly.	 Positioner is not properly adjusted. 	Perform self-adaption.
Positioner does not respond to control signal.	 Positioner is in manual mode 	 Switch to automatic mode by pressing the two buttons (IN and OUT).

*Applicable if IPC mode is set to OFF. If IPC mode is set to ON, a process variable is controlled to a specified setpoint. Constantly changing ambient conditions (disturbances) lead to the solenoid valves switching in order to keep the process variable at the specified value.

2.22 Adjusting the control parameters

Various methods are available for determining the control parameters. The most important are described briefly below.

2.22.1 Empirical setting

This method is suitable for setting simple systems, particularly if the person doing the setting has already had some experience with similar control loops.

Start first with a rough setting (Kp very small, Tn = INACTIVE and Td = INACTIVE) and slowly increase the gain Kp until the control loop begins to oscillate. If there is a tendency to oscillate, the gain must be reduced again slightly.

Then the integral component is added gradually, Tn reduced and tested until the result is more or less suitable. If necessary, a D component can be added (Td increased slowly). If the control becomes more stable as a result, Kp can be increased again or Tn reduced until the result is finally satisfactory.

It should be made clear that optimisation done this way without exact knowledge of the control loop does not always produce the best result, but it remains a well-established, practical method of determining the control parameters.

Using the response patterns of the actual value, the control loop can be optimised retrospectively:

Actual value approaches the set point value without significant oscillations.	Optimal control behaviour for processes which allow no oscillating.
Actual value approaches the set point value with slightly damped oscillations.	Optimal control behaviour for reaching set point quickly and for excluding interference components. The initial oscillations should not exceed 10% of the set point step.
Actual value approaches the set point value quickly but oscillates wildly. The oscillations are damped and so are only just stable.	Reduce gain Kp. If there is a resulting improvement, next increase derivative time Td. Repeat this until a satisfactory control result is obtained.

2.22.2 The Ziegler-Nichols method

Using the Ziegler/Nichols method, the control parameters are set so that the stability limit is reached and the degree of control triggers periodic oscillations, that is, the control loop starts to oscillate. The control parameters can be determined from the setting found in this manner.

<u>Caution!</u> This method can be used only for control loops in which oscillations do not cause any damage and cannot make the control loop completely unstable.

The procedure is as follows:

- Set the controller purely as a P-controller: Tn = OFF (1000=OFF) and Td = OFF (0=OFF)
- The gain Kp is increased until the closed control loop reaches the stability limit and steady oscillations are occurring (critical state).
- The set value Kp here is designated as Kpkrit.
- The periodic time of the self-initiated steady oscillation T_{krit} is measured (in seconds).

• The control parameters are then determined from the following table.

Type of	Gain	Integral time	Derivative time
controller	Кр	Tn	Td
Р	0.50 Kp _{krit}	OFF	OFF
PI	0.45 Kp _{krit}	0.85 T _{krit}	OFF
PID	0.60 Kp _{krit}	0.5 T _{krit}	0.12 T _{krit}

2.22.3 Chien, Hrones and Reswick method

It is sometimes impossible or dangerous in actual control loops to generate a periodic oscillation to determine the adjustment values by the Ziegler-Nichols method. In cases like this and in systems with large delays, the Chien-Hrones-Reswick method is suitable.

The method is based on the step response of the control loop, i.e. of the gain K_s , the delay time T_u and the stabilisation time T_g determined from it.

The method should be used only if the stabilisation time T_g is three times greater than the delay time T_u .

$$T_g \ge 3^* T_u$$

The procedure is as follows:

- Perform a set value step Δy on the value (refer to Chapter: Determination of the loop gain Ks).
- And plot the change in actual value Δx resulting from this

- The gain K_s is calculated as follows: $K_s = \Delta x / \Delta y$ (see example)
- At the inflexion point of the curve in the plotted graph of the change in the actual value, draw a tangent and read off the delay time T_u and the stabilisation time T_g.
- Depending on the requirement, for a good disturbance response (consistent set point value, change in boundary conditions) or control response (change in set point value, consistent boundary conditions) setting values appear as the following recommended values:

Type of		No oscillations		with approx. 20% oscillations	
controller		Disturbance response	Control response	Disturbance response	Control response
	Кр	0,3 Tg/(Tu*Ks)	0,3 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)
Р	Tn	OFF	OFF	OFF	OFF
	Td	OFF	OFF	OFF	OFF
PI	Кр	0,6 Tg/(Tu*Ks)	0,35 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)
	Tn	4 Tu	1,2 Tg	2,3 Tu	1 Tg
	Td	OFF	OFF	OFF	OFF
	Кр	0,95 Tg/(Tu*Ks)	0,6 Tg/(Tu*Ks)	1,2 Tg/(Tu*Ks)	0,95 Tg/(Tu*Ks)
PID	Tn	2,4 Tu	1 Tg	2 Tu	1,35 Tg
	Td	0,42 Tu	0,5 Tu	0,42 Tu	0,47 Tu

2.22.4 Kuhn T-sum rule

In many cases the delay time T_u is very short or even undetectable. In these cases, the T-sum rule can be used.

It applies if the ratio between the stabilisation time T_g and the delay time T_u does not allow for determination by the Chien, Hrones and Reswick method (e.g. if $T_g < 3 * T_u$).

The procedure is as follows:

- Perform a set value step Δy on the value (refer to Chapter: Determination of the loop gain Ks).
- And plot the change in actual value Δx resulting from this.

- The gain K_s is calculated as follows: $K_s = \Delta x / \Delta y$ (see example)
- The vertical line is moved until the areas F1 und F2 are of equal size (a good estimate is sufficient)
- The total time constant T_{Σ} can be read off.
- The control parameters can be determined using the following table.

Standard setting

Type of	Gain	Integral time	Derivative time
controller	Кр	Tn	Td
Р	1/Ks	OFF	OFF
PI	0,5/Ks	0,5* Τ Σ	OFF
PID	1/Ks	0,66* Τ Σ	0,167* Τ _Σ
Setting for fast control action

Type of	Gain	Integral time	Derivative time
controller	Кр	Tn	Td
PI	1/Ks	0,7* Τ Σ	OFF
PID	2/Ks	0,8* Τ Σ	0,194* Τ _Σ

2.22.5 Determination of the loop gain K_s

The loop gain K_s indicates how the control loop reacts to a change in the level of the set point value (as we manipulate the valve setting).

Since the determination of the K_s factor is treated theoretically usually in the relevant literature, the example below is provided for more precise clarification of it. It also serves to show how units are taken into account.

Example: Temperature control

- First, select the step function menu (Stf).
- The lower set point position is entered (in %). The valve setting now corresponds to the adjusted value. (in this example, this is a 40% valve stroke).
- Then the upper position is entered (in %). The valve setting now corresponds to the adjusted value. (in this example, this is a 60% valve stroke).
- To determine the optimal control parameters, the step signal should lie in the region of the operating point of the controller anticipated later.
- After confirmation of the values, switching can take place back and forth between these two set point values.
- In this process, the change in the actual value must be recorded by a suitable measuring device.

This example produces the following results:

before step signal	after step signal	change
Y1=40%	Y2=60%	a 20% step
X1=30°C	X2=60°C	Temperature increase of 30°C

The loop gain K_s can now be determined:

K_% = percentage gain

 $K_{\%} = \Delta x / \Delta y$ $K_{\%} = (60^{\circ}\text{C} \cdot 30^{\circ}\text{C}) / (60\% - 40\%)$ $K_{\%} = 30^{\circ}\text{C} / 20\%$ $K_{\%} = 1.5 \ ^{\circ}\text{C} / \%$

This means that, by changing the valve opening by 1%, a temperature increase of 1.5°C can be expected.

It can be seen also from this value that the loop gain is unit-dependent. Therefore it is important, that the measurement range of the actual value is also adjusted correctly in relation to the units.

Since K_s relates to a 100% change in set point value, this value still has to be multiplied by 100:

$$K_s = K_{\%} * 100 = 1.5^{\circ} C /\% * 100\% = 150$$

Using this value (150), the control parameters Kp, Tn, and Td can be determined in accordance with the method given above.

2.23 Installation of linear actuators

2.23.1 Installation of the mouting kit

- 3 Iviounting ki
- 4 Positioner

The mounting kit is attached to the top of the valve actuator. This attachment can vary depending on the valve design.

The positioner is connected to the valve via a mechanical stop that must be provided on the valve side and connected to the valve spindle. The feedback sensor rod with return spring rests on the flat surface of the stop and reports the valve position to the positioner.

The stop must be adjusted so that the dimension "X" is reached, measured from the top edge of the adapter ring to the contact surface when the valve is not pressure-operated (see below). After adjustment, it must be secured by locking or gluing.

Note: Depending on the actuator design, an optical display may not be required (e.g. for diaphragm actuators with a column structure). In this case, only the adapter ring is attached directly to the valve actuator; however, the setting dimension "X" remains the same, i.e. the sensor rod extends into the actuator.

The dimension "X" is not constant but depends on the valve stroke:

For spring-closing actuators:

X in mm = 50,8 +Stroke/2

and with spring-opening actuators:

X in mm = 50,8 - Stroke/2

2.23.2 Installation of the positioner

- Place positioner including pushrod and return spring onto the mounting kit.
- Tighten the 3 threaded pins on the side of the mounting ring.
- Connect output "Y1" to the valve actuator.

Make sure that this connection is tight, otherwise the solenoid valves in the positioner will operate continuously.

- Connect supply air (connection "P").
- Open the cover of the positioner and make the electrical connections.
- Perform adjustment of the positioner.
- Close the positioner cover.

Disassemble the positioner in reverse order.

2.24 Installation of rotary actuators

The digital positioner for quarter turn actuators is designed for installation on quarter turn actuators with mounting kit according to VDI/VDE 3835.

For double-acting actuators:

- 1. Move valve to the "closed" position.
- Turn the clutch (1) until the angle indicator (2) is at 0°.

For single-acting actuators "spring closes":

- 1. Do <u>not</u> apply compressed air to the actuator.
- 2. Turn the clutch (1) until the angle indicator (2) is at 0°.

For single-acting actuators "spring opens":

- 1. Do not apply compressed air to the actuator.
- Turn the clutch (1) until the angle indicator (2) is at 90°.

- 3. Place the positioner onto the bracket of the mounting kit. The coupling must engage in the groove of the actuator (A).
- 4. Fasten the positioner to the console using screws (4) and washers (5).
- 5. <u>Never</u> loosen the threaded pins of the coupling (1) and the ring (2)!
- 6. Establish pneumatic connections between positioner and actuator.
 - For single-acting actuators: Output Y1
 - For double-acting actuators: Output Y1 and Y2

Make sure that this connection is tight, otherwise the solenoid valves in the positioner will operate continuously.

- 7. Open the cover of the positioner and make the electrical connections.
- 8. Connect supply air (connection "P").
- 9. Perform adjustment of the positioner.
- 10. Close the positioner cover.

Disassemble the positioner in reverse order.

2.25 Maintenance and repair

The device is maintenance-free.

There is a filter insert on the back of the metal housing base, which can be unscrewed and cleaned or replaced if necessary.

The maintenance instructions of any upstream supply air reduction stations must be observed.

2.26 Disposal

The device and packaging must be disposed of in accordance with the relevant laws and regulations in each country.

2.27 Dimensions and weights

Weight approx. 1 kg

3 **(F)** Instructions d'utilisation (en français)

3.1 Généralités

Les consignes de sécurité et de prévention des accidents en vigueur doivent toujours être prises en compte, en plus des consignes contenues dans ce document.

Si, dans un cas donné, les informations contenues dans ce document ne sont pas assez détaillées, notre service se tient à votre disposition pour vous fournir des renseignements complémentaires.

Avant l'installation et la mise en service, veuillez lire attentivement ce document.

3.2 Montage

Le positionneur peut être monté sur toute vanne de régulation pneumatique ayant une course de 3 à 28 mm (50 mm en option) (« Top Mounted »).

Pour faciliter le montage sur la vanne, différents kits de montage sont disponibles ; ces derniers comprennent les pièces nécessaires pour relier l'actionneur de vanne et le positionneur, une tige de détection de retour pour la course de vanne et, en cas de besoin, un indicateur visuel de position de la vanne.

Étant donné que l'adaptation du positionneur à la course de vanne se fait de façon automatique, on utilise un kit de montage standard, qui peut toutefois, en cas de besoin, être adapté, côté actionneur, aux caractéristiques mécaniques de la vanne. Tous les paramètres du 8049 IPC, de même que les principaux paramètres du 8049-4 peuvent être réglés directement sur l'appareil via un menu. Il est également possible de régler l'ensemble des paramètres à l'aide du logiciel de configuration « DeviceConfig » disponible gratuitement.

3.3 Utilisation conforme à l'usage prévu

Le positionneur avec régulateur de processus intégré de type 8049 IPC est un régulateur permettant le positionnement d'organes de régulation à commande pneumatique. Il est prévu pour être monté sur des actionneurs linéaires ou pivotants, conformément aux consignes contenues dans ces instructions d'utilisation.

L'appareil ne doit être utilisé que pour les cas d'application décrits dans ces instructions d'utilisation ou dans les fiches techniques. Toute autre utilisation est considérée comme non conforme à l'usage prévu.

3.4 Lois et dispositions légales

Lors du raccordement, du montage et de la mise en service, les dispositions légales en vigueur dans le pays concerné doivent être respectées.

Cela inclut, par exemple :

L'ordonnance sur la sécurité des entreprises (en Allemagne)

3.5 Consignes générales de sécurité

Seul un personnel qualifié, expérimenté dans le montage, la mise en service et le fonctionnement de ce produit, est autorisé à installer et à mettre en service ce dispositif.

Au sens de ces instructions d'installation et d'utilisation, on entend par personnel qualifié les personnes qui, en raison de leur formation technique, de leurs connaissances et de leur expérience ainsi que de leurs connaissances des normes applicables, sont en mesure d'évaluer les travaux qui leur sont confiés et de repérer les dangers potentiels.

Des mesures appropriées doivent être prises pour éviter tout risque lié au fluide passant au niveau de la vanne de régulation, à la pression de service, à la pression de régulation, ainsi qu'aux pièces mobiles.

Si le niveau de la pression d'air d'alimentation dans l'actionneur pneumatique entraîne des mouvements ou des forces inadmissibles, celui-ci doit être limité par un poste de réduction approprié.

L'ouverture d'évacuation d'air ne doit pas être obturée par le client.

Un transport et un stockage adéquats sont les conditions d'un bon fonctionnement de l'appareil.

3.6 Fonctionnement

Le régulateur de processus intégré de type 8049 IPC, basé sur le positionneur de type 8049-4 version 6, peut être monté sur n'importe quelle vanne de régulation pneumatique présentant des courses comprises entre 3,5 et 50 mm ou sur un actionneur rotatif présentant un angle de rotation pouvant aller jusqu'à 180° (« Top Mounted »). Le fonctionnement en tant que régulateur de processus intégré peut être désactivé, de sorte que le régulateur de type 8049 IPC fonctionne alors comme un positionneur standard de type 8049-4 (lorsque cela est nécessaire, une distinction est faite entre les deux modes dans ces instructions d'utilisation).

Le régulateur de processus de type 8049 IPC permet de procéder à des tâches de régulation locales, le capteur de grandeur de processus étant directement raccordé pour cela au régulateur de processus.

Le régulateur fonctionne comme un régulateur PID avec l'équation de transfert suivante :

$$y - y_0 = \frac{100\%}{X_P[\%]} \cdot \left[(w - x) + \frac{1}{T_N} \int (w - x) dt + T_V \frac{d(w - x)}{dt} \right]$$

Avec :		
Paramètre	Signification	Remarque
W	Valeur de consigne	
Х	Valeur réelle	
CP	Gain	Part proportionnelle (P) de la fonction de régulation, désignée par
		Kp dans la suite de ce document
Y ₀	Point de fonctionnement	Utilisation uniquement pour les régulateurs P ou PD, afin de maintenir l'écart de régulation à un niveau faible. Le point de fonctionnement est le signal de positionnement que le régulateur délivre pour un écart de régulation nul.
T _N	Temps d'intégrale	Part intégrale (I) de la fonction de régulation
Τv	Temps de dérivée	Part différentielle (D) de la fonction de régulation

3.7 Caractéristiques techniques

Course nominale	3 – 28 / 3 – 50 mm
Tension de charge	2,5 V (125 Ω @ 20 mA)
Température ambiante admise	-10 à +75 °C
Grandeur de réglage (valeur réelle)	0 / 4 – 20 mA, Pt 100 (2 ou 3 conducteurs)
Grandeur de référence (valeur de	via le clavier ou
consigne)	0 / 4 - 20 mA ; 0 / 2 - 10 V
Comportement de régulation	P (avec point de fonctionnement y0)
	PD (avec point de fonctionnement y0)
	PI
	PID
Précision	≤ 0,5 % de la valeur finale
Sortie d'alarme	absolue directe / inverse,
	relative directe / inverse,
	bande directe / inverse
Energie auxiliaire, électrique	24 VDC max. 10 W
Réglage de la course et du point zéro	auto-apprentissage
Configuration	Directement sur l'écran ou via le logiciel sur PC
Energie auxiliaire, pneumatique	max. 6 bar
Débit d'air non restreint*	40 NI/min
Consommation d'air fixe	< 0,06 NI/min
Fuite du système	< 0,01 NI/min
Qualité de l'air conformément à la	
norme ISO 8573-1 :	
Taille et densité maximales des	Classe 5
particules solides	Classe 4
Teneur en huile	Classe 3
Point de rosée sous pression	min. 20 K (36 °F) sous la température ambiante
	Air comprimé ou gaz non inflammables (azote, CO2,)
Gaz d'actionnement	
Montage sur l'actionneur	Via des kits de montage standardisés (également avec
	affichage optique de la course)
Raccord de pression	
Section de raccordement maximale	1,5 mm²
Degré de protection selon EN 60529	IP 65

*à une pression d'air d'alimentation de 5 bar

3.8 Arrivée d'air

L'arrivée d'air est reliée à l'entrée « P » (filetage de 1/8").

La pression d'arrivée d'air <u>ne doit pas</u> dépasser 6 bars, au risque de provoquer un dysfonctionnement.

Qualité de l'air :

Air industriel sans présence d'huile, teneur en particules solides < 30μ , point de rosée sous pression de 20 K en dessous de la température ambiante la plus basse.

3.9 Raccordements électriques

Le raccordement électrique ne doit être effectué que par du personnel qualifié. Lors du montage, de la mise en service et de l'utilisation des appareils, respectez impérativement les prescriptions de sécurité nationales correspondantes (par exemple, VDE 0100).

Tous les travaux doivent être effectués hors tension.

Le non-respect des prescriptions correspondantes peut entraîner de graves blessures corporelles et / ou des dommages matériels.

Le positionneur a besoin d'une alimentation en tension externe (24 VDC, filtrée, ondulations de 10 % max.). La consommation moyenne de courant est de 300 mA max. (600 mA en double effet). Comme des courants de pointe plus élevés circulent au moment de l'enclenchement, il faut prévoir une protection par fusible d'au moins 1 A (2 A en double effet) à action retardée.

Le raccordement de l'alimentation en tension doit être effectué par le biais d'un deuxième câble séparé des câbles de signaux.

Après avoir ouvert le couvercle du positionneur, les bornes à vis du bornier A (5) et du bornier B (1) sont accessibles pour les différents raccordements.

La section de raccordement maximale est de 1,5 mm².

Les presse-étoupes non utilisés doivent impérativement être rendus étanches à l'aide d'un bouchon approprié afin de conserver le degré de protection (IP65).

- 1 Bornier B
- 2 Interface pour le logiciel DeviceConfig
- 3 Touche « IN »
- 4 Touche « SEL »
- 5 Bornier A
- 6 Touche « OUT »

Le positionneur doit être mis à la terre. Une vis de mise à la terre se trouve à l'extérieur du boîtier et sur la platine, à proximité des bornes de connexion.

Il faut en outre utiliser des câbles blindés.

3.9.1 Exemples de raccordements

Mesure avec Pt 100 à 2 conducteurs

Positionneur 8049 IPC

Mesure avec Pt 100 à 3 conducteurs

recommandée en cas de longues distances

Positionneur 8049 IPC

Capteur de mesure mA

Positionneur 8049 IPC

Transducteur de mesure mA, version à 2 conducteurs (avec alimentation interne du capteur)

Positionneur 8049 IPC

Mode IPC = IPC OFF ou mode IPC = LCD Only (même mode de travail que le positionneur 8049-4)

Positionneur 8049 IPC

3.10 Utilisation

3.10.1 Indications générales sur l'utilisation du menu

Le régulateur de processus de type 8049 IPC et le positionneur 8049-4 peuvent être réglés et paramétrés par le biais d'un menu s'affichant à l'écran. Le menu est appelé en appuyant en continu sur la touche « SEL » pendant environ 3 secondes, la navigation dans le menu s'effectue à l'aide du clavier à effleurement (ou bien, lorsque le couvercle est ouvert, à l'aide des boutons-poussoirs situés à l'intérieur du régulateur) avec trois éléments de commande :

1	La touche « IN » permet de monter dans le menu ou d'incrémenter une valeur à modifier. Un appui continu sur la touche accélère l'incrémentation.
2	La touche « OUT » permet de descendre dans le menu ou de décrémenter une valeur à modifier. Un appui continu sur la touche accélère la décrémentation.
3	La touche « SEL » permet d'exécuter une action (passage à un sous-menu, retour à un menu de niveau supérieur ou définition d'un réglage) correspondant à la ligne de menu sélectionnée.

Pour quitter un menu, il suffit de cliquer sur la ligne de menu « - back - », ce qui fait revenir au menu de niveau supérieur (en quittant le menu principal, on revient à l'affichage principal). Toute inactivité sur un menu ouvert (aucun appui sur les éléments de commande IN, OUT ou SEL pendant 20 minutes) ou un appui simultané sur les touches IN et OUT pendant au moins 0,5 seconde entraîne la sortie du menu et le retour direct à l'affichage principal.

Par défaut, les menus *IPC param* et *Parameter* sont protégés par un mot de passe. La protection par mot de passe peut être désactivée dans le logiciel de configuration DeviceConfig.

Les valeurs et réglages modifiés ne sont enregistrés que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.10.2 Structure d'une page de menu

Une page de menu se compose d'un en-tête (1), d'un index de page (2) et des entrées de menu (3). Lorsqu'un menu comporte plus de trois entrées, cela est indiqué par une barre représentant la position de la zone actuellement sélectionnée (4).

Un appui sur la touche « IN » sur la première entrée du menu entraîne un saut dans le menu et la dernière entrée du menu est alors affichée.

Un appui sur la touche « OUT » sur la dernière entrée du menu entraîne un saut dans le menu et la première entrée du menu est alors affichée.

Indication : Pour une meilleure vue d'ensemble, le menu complet est toujours indiqué dans les chapitres décrivant les différentes pages du menu, même si celui-ci possède plus de trois entrées. La barre n'est toutefois plus représentée.

3.10.3 Contenu de l'écran du 8049-4

L'affichage standard est toujours actif lorsque le régulateur de processus 8049 IPC se trouve en mode « IPC OFF » ou « LCD only », qu'il n'y a pas d'erreur et qu'aucun paramétrage n'est en cours. L'appareil fonctionne alors comme un simple positionneur de type 8049-4.

La position actuelle, en pourcentage, est affichée en grand (1) et la valeur de consigne actuelle de la position de la vanne est indiquée en dessous (2). La ligne supérieure décrit le contenu de l'écran (3).

Affichage des états d'erreurs :

Lorsqu'il y a une erreur sur l'appareil, celle-ci est signalée par son code d'erreur (2). La première ligne contient une brève description du code d'erreur (1) et la troisième ligne des informations supplémentaires. Pour une description détaillée des différents codes d'erreurs, voir la section 3.20.

3.10.4 Contenu de l'écran du 8049 IPC

Affichage standard :

L'affichage standard est toujours actif lorsque le régulateur de processus 8049 IPC se trouve en mode « IPC ON », qu'il n'y a pas d'erreur et qu'aucun paramétrage n'est en cours.

La valeur réelle actuelle (X) du capteur, en unités, est affichée en grand sur l'ensemble de l'écran. (1) La valeur de consigne actuelle (W), en unités, est affichée en haut à droite. (2)

L'échelle de la valeur de mesure et le nombre de décimales après la virgule peuvent être paramétrés dans le menu.

Pendant la définition manuelle de la valeur de consigne (3.16.21.16.2), la valeur de réglage du positionneur est affichée en position 2.

Une alarme IPC active (3.171.17) est symbolisée par un affichage clignotant de la cloche (3).

L'affichage des messages d'erreurs est identique à celui de l'écran du 8049-4.

3.11 **Première mise en service du 8049 IPC**

Pour garantir un fonctionnement sûr et correct du 8049 IPC lors de sa première mise en service, il faut régler, au moins, les paramètres suivants :

- Type de signal de consigne (voir section 3.13.2)
- Type d'acquisition de la valeur réelle (voir section 3.13.3)
- Plage de valeurs de l'acquisition de la valeur réelle (voir section 3.13.4)
- Sens d'action du signal de régulation (voir section 3.13.11)
- Mise du mode IPC sur ON (voir section 3.13.5)

Le mode IPC ne doit être mis sur ON qu'à la fin du réglage des paramètres, car cela lance la régulation de la grandeur de processus.

3.12 Guidage par menus – Menu principal

3.12.1 Menu main – Menu principal

Menu main	0)
IPC param		
Parameter		
Info		
Error info		
Settings		
- back -		

Entrée	Description	
IPC param	am Sous-menu permettant de régler tous les paramètres du 8049 IPC	
-	protégé par un mot de passe (mot de passe par défaut : 1)	
Parameter	Sous-menu permettant de régler tous les paramètres du positionneur de type 8049-4	
	protégé par un mot de passe (mot de passe par défaut : 1)	
Info	Sous-menu contenant des informations sur l'équilibrage automatique, la version du	
	firmware, le numéro de série et les heures de service	
Error info	Sous-menu contenant des informations sur les erreurs survenues, ainsi que des	
	informations sur la maintenance	
Settings	Sous-menu permettant de modifier le mot de passe, de lancer le reset d'usine et de	
	démarrer l'équilibrage automatique	
- back -	Quitter le menu	

3.13 Guidage par menus – IPC

IPC param – Réglage des paramètres de l'IPC

Le menu *IPC param* et les sous-menus correspondants permettent d'effectuer l'ensemble des réglages pour le régulateur de processus intégré **de type 8049 IPC**.

IPC param	34
PID	
Setpoint	
Sens signal	
Sens scale	
IPC mode	
Filter	
Step func	
Alarm	
Cycle time	
Digits	
Work dir	
Err action	
SW version	
- back -	

Entrée	Description	
PID	Sous-menu permettant de régler les paramètres PID	
Setpoint	Sous-menu permettant de régler la source de la valeur de consigne de l'IPC	
Sens signal	Sous-menu permettant de régler l'entrée du capteur	
Sens scale	Sous-menu permettant de saisir la plage de valeurs de l'IPC	
IPC mode	Sous-menu permettant d'activer ou de désactiver l'IPC	
Filter	Sous-menu permettant d'activer ou de désactiver le filtre supplémentaire pour la valeur	
	réelle de l'IPC	
Step func	Sous-menu permettant de régler et d'exécuter la fonction échelon (par exemple,	
	détermination du gain du circuit Ks, voir section 3.22.5)	
Alarm	Sous-menu permettant de régler les alarmes de l'IPC	
Cycle time	Sous-menu permettant de régler le temps de cycle de l'IPC	
Digits	Sous-menu permettant de régler le nombre de décimales utilisé après la virgule	
Work dir	Sous-menu permettant de régler le sens d'action de l'IPC	
Err actions	Sous-menu permettant de régler le comportement de l'IPC en cas d'erreurs diverses	
SW version	Sous-menu permettant d'afficher la version de firmware de l'IPC	
- back -	Retour au menu « Menu main »	

3.13.1 PID – Réglage des paramètres de régulation

Entrée	Description
Кр	Sous-menu permettant de régler le gain proportionnel
Tn	Sous-menu permettant de régler le temps d'intégrale
Td	Sous-menu permettant de régler le temps de dérivée
Y0	Sous-menu permettant de régler le point de fonctionnement (pour les régulateurs P ou PD)
- back -	Retour au menu IPC Param

3.13.1.1 Set Kp

Menu permettant de régler le gain proportionnel Kp

â i		4.1
Set	Кр	4 L
	1.0	
-	back -	
ι		

Plage de valeurs	1.0 – 100.0
Valeur par défaut	1.0

Toute modification de la valeur de Kp prend effet immédiatement, mais l'enregistrement de la valeur n'a lieu que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.13.1.2 Param Tn

Menu permettant d'activer / de désactiver la part intégrale du régulateur et de régler le temps d'intégrale.

Param Tn	42	Set I	'n	44
o Active				
• Inactive			3.0s	
– back –		– k	back -	

Entrée	Description
Active	La part intégrale est activée, appel du sous-menu permettant de régler le temps d'intégrale Tn
Inactive	La part intégrale est désactivée
- back -	Retour au menu PID

Plage de valeurs1.0s – 4999.0sValeur par défaut3.0s

Toute modification de la valeur de Tn prend effet immédiatement, mais l'enregistrement de la valeur n'a lieu que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.13.1.3 Param Td

Menu permettant d'activer / de désactiver la part différentielle du régulateur et de régler le temps de dérivée.

Param Td	43		Set	Tn	45
o Active		│ ►			
• Inactive				3.0s	
- back -			-	back -	

Entrée	Description
Active	La part différentielle est activée, appel du sous-menu permettant de régler le temps
	de dérivée Td
Inactive	La part différentielle est désactivée
- back -	Retour au menu PID

Plage de valeurs	1.0s – 2999.0s
Valeur par défaut	3.0s

Toute modification de la valeur de Td prend effet immédiatement, mais l'enregistrement de la valeur n'a lieu que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.13.1.4 Set Y0

Menu permettant de régler le point de fonctionnement Y0 (utilisé uniquement pour les régulateurs P et PD)

Set	ΥO	46	5
	50 0%		
-	back -		

Plage de valeurs	0.0% - 100.0%
Valeur par défaut	50.0 %

Toute modification de la valeur de Y0 prend effet immédiatement, mais l'enregistrement de la valeur n'a lieu que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.13.2 Setpoint – Source de la valeur de consigne / Réglage de la valeur de consigne interne

Menu permettant de régler le type de signal de consigne.

Si la valeur de consigne interne est utilisée, elle doit être indiquée en unités de la grandeur de processus (voir section 3.13.4).

Setpoint	54]	Intern set	55
o Internal		│ ──── →	incorn boo	
oExt 4-20mA			0 0	
oExt 0-20mA			0.0	
- back -			- Dack -	

Entrée*	Description
Internal	Définition interne de la valeur de consigne, appel du sous-menu permettant de régler la valeur de consigne interne
Ext 4-20mA	Définition externe de la valeur de consigne, plage de signal 4 – 20 mA, bornes de raccordement 6 et 7
Ext 0-20mA	Définition externe de la valeur de consigne, plage de signal 0 – 20 mA, bornes de raccordement 6 et 7
- back -	Retour au menu IPC Param

* Lors de l'utilisation d'un positionneur 8049-4 avec entrée de tension pour la définition de la valeur de consigne, ceci est affiché de manière appropriée dans le menu (Internal / ext. 2 – 10 V / ext. 0 – 10 V)

Intern set : - Définition interne de la valeur de consigne directement sur l'IPC

Plage de valeurs	De Value min à Value max (voir section 3.13.4)
Valeur par défaut	(Value max – Value min) / 2

Toute modification de la valeur de consigne interne prend effet immédiatement, mais l'enregistrement de la valeur n'a lieu que si la sortie du menu correspondant se fait via la ligne de menu « - back - ».

3.13.3 Sensor sig – Sélection du signal de valeur réelle

Sensor sig	36
o 4-20 mA	
00-20 mA	
0 PT100	
- back -	

Entrée	Description
4-20 mA	Acquisition de la valeur réelle au moyen d'un signal de courant, plage de signal 4 – 20
	mA,
	bornes de raccordement 20 et 21
0-20 mA	Acquisition de la valeur réelle au moyen d'un signal de courant, plage de signal 0 – 20
	mA,
	bornes de raccordement 20 et 21
PT100	Acquisition de la valeur réelle au moyen d'une sonde PT 100, bornes de raccordement
	22, 23 et 24
- back -	Retour au menu IPC Param

Exemples de câblage, voir 1.9.1

3.13.4 Sens scale – Mise à l'échelle de la plage de valeurs

Menu permettant de régler la plage de valeurs, « en unités », de l'acquisition de la valeur réelle.

Exemple de régulation de pression : la valeur réelle est mesurée par un capteur de pression offrant une plage de mesure de 0 à 6 bars ; il en résulte les réglages suivants : Value min = 0, Value max = 6

Entrée	Description
Value min	Appel du sous-menu permettant de régler la valeur réelle minimale
Value max	Appel du sous-menu permettant de régler la valeur réelle maximale
- back -	Retour au menu IPC Param

Value min :

value mini .	
Plage de valeurs	-9999.9 – Value max
Valeur par défaut	0.0

Value max :

Plage de valeurs	Value min – 9999.9
Valeur par défaut	100.0

3.13.5 **IPC mode**

IPC mode	35
o ON	
• OFF	
o LCD only	
– back –	

Entrée	Description
ON	L'IPC est activé
OFF	L'IPC est désactivé et fonctionne comme un régulateur standard 8049-4
	Un IPC désactivé est représenté à l'écran par un affichage alterné (affichage par défaut 8049-4 et message « IPC IS OFF »).
LCD only	L'IPC est désactivé et fonctionne comme un régulateur standard 8049-4.
	Contrairement à l'entrée de menu « OFF », un IPC désactivé n'est pas représenté ici par un affichage alterné.
	Réglage lorsqu'il est nécessaire d'avoir un régulateur standard 8049-4 avec écran supplémentaire.
- back -	Retour au menu IPC Param

3.13.6 Filter – Filtre du signal de valeur réelle

Filter	53
o ON	
• OFF	
- back -	

Entrée	Description
ON	Le préfiltrage du signal de valeur réelle est activé
OFF	Le préfiltrage du signal de valeur réelle est désactivé
- back -	Retour au menu IPC Param

3.13.7 Step func – Fonction échelon

Menu permettant de régler et d'exécuter un saut échelon dans la grandeur de réglage. Il peut être utilisé pour déterminer le gain du circuit (voir section 2.22.5).

Entrée	Description
Position 1	Appel du sous-menu permettant de régler la première position de la fonction échelon
Position 2	Appel du sous-menu permettant de régler la seconde position de la fonction échelon
Step	Chaque appui sur la touche SEL permet d'alterner entre la Position 1 et la Position 2 Tant que la fonction échelon est active, la régulation sur la valeur de consigne est suspendue.
- back -	En cas de retour au menu IPC Param, la régulation sur base de la dernière valeur de consigne valable est à nouveau activée.

Step pos 1:

<u>otop poo 1 .</u>	
Plage de valeurs	0.0% - 100.0%
Valeur par défaut	40.0 %

Step pos 2 :

Plage de valeurs	0.0% - 100.0%
Valeur par défaut	60.0 %

3.13.8 Alarm

Alarm	47
o ON	
• OFF	
– back –	

Entrée	Description
ON	Les alarmes de l'IPC sont activées, appel du sous-menu permettant de configurer les alarmes
OFF	Les alarmes de l'IPC sont désactivées
- back -	Retour au menu IPC Param

3.13.8.1 Alarm conf

Menu permettant de régler le type d'alarme, les valeurs limites et l'hystérésis pour définir les alarmes de l'IPC. L'hystérésis et les valeurs limites sont indiquées « en unités » de la grandeur de processus (voir section 3.13.4).

Description
Appel du sous-menu permettant de régler la valeur seuil relative (utilisation en cas de
types d'alarmes relatives et d'alarmes de bande)
Appel du sous-menu permettant de régler la valeur seuil absolue (utilisation en cas de
types d'alarmes absolues)
Appel du sous-menu permettant de régler l'hystérésis des alarmes (utilisation
indépendante du type d'alarme)
Appel du sous-menu permettant de définir le type d'alarme
Retour au menu Alarm

Setpt rel :

Plage de valeurs	Value min – Value max (défini comme dans le menu Sens scale, section 3.13.4)
Valeur par défaut	5.0

Setpt abs :

Plage de valeurs	Value min – Value max (défini comme dans le menu Sens scale, section 3.13.4)
Valeur par défaut	90.0

Hysteresis :	
Plage de valeurs	0.0 – 100.0
Valeur par défaut	1.0

3.13.8.1.1 Alarm type

Menu permettant de régler le type d'alarme. Selon le choix, les paramètres *Setpt rel* et *Hysteresis* ou *Setpt abs* et *Hysteresis* sont utilisés pour l'évaluation de l'alarme. Une alarme active est symbolisée par une cloche clignotante sur l'affichage principal de l'IPC.

A	Larm	type	52
•	Band	l	
0	Rel	low	
0	Rel	high	
0	Abs	low	
0	Abs	high	
	- ba	ack -	

Entrée	Description
Band	
Rel low	
Rel high	Choix du type d'alarme (pour l'explication, voir section 3.17)
Abs low	
Abs high	
- back -	Retour au menu Alarm Config

3.13.9 Cycle time – Temps de cycle

Cycle time	59
o 25 ms	
• 50 ms	
o100 ms	
o 200 ms	
o 500 ms	
- back -	

Entrée	Description
25 ms	Le temps de cycle de l'IPC est de 25 ms
50 ms	Le temps de cycle de l'IPC est de 50 ms
100 ms	Le temps de cycle de l'IPC est de 100 ms
200 ms	Le temps de cycle de l'IPC est de 200 ms
500 ms	Le temps de cycle de l'IPC est de 500 ms
- back -	Retour au menu IPC Param

3.13.10 Digits – Nombre de décimales après la virgule

Menu permettant de régler le nombre de décimales affichées pour la présentation de la valeur de consigne interne (voir section 3.13.2), les valeurs minimale et maximale du signal d'entrée (voir section 3.13.4), ainsi que les valeurs seuils relative et absolue et l'hystérésis de la fonction Alarme.

Di	lgi	ts		6(C	
0	0					
0	1					
٠	2					
	-	back	-			

Entrée	Description
0	Aucune décimale après la virgule
1	Une décimale après la virgule
2	Deux décimales après la virgule
- back -	Retour au menu IPC Param

3.13.11 Work dir – Sens d'action

D	igits	61	L
•	direct		
0	invers		
	– back –		

Entrée	Description
direct	Le signal de régulation agit de façon directe
invers	Le signal de régulation agit de façon inverse
- back -	Retour au menu IPC Param

3.13.12 Error act – Actions en cas d'erreurs

Error act	62
Com timeout	
Setpt min	
Setpt max	
Actval min	
Actval max	
– back –	

Entrée	Description
Com timeout	Sous-menu permettant de régler l'action à mener en cas de time-out de communication avec le module IPC
Setpt min	Sous-menu permettant de régler l'action à mener en cas de passage en dessous de la valeur minimale autorisée de la valeur de consigne
Setpt max	Sous-menu permettant de régler l'action à mener en cas de passage au-dessus de la valeur maximale autorisée de la valeur de consigne
Actval min	Sous-menu permettant de régler l'action à mener en cas de passage en dessous de la valeur minimale autorisée de la valeur réelle
Actval max	Sous-menu permettant de régler l'action à mener en cas de passage au-dessus de la valeur maximale autorisée de la valeur réelle
- back -	Retour au menu IPC Param

3.13.13 Sous-menus Actions en cas d'erreurs

Pour chacune des erreurs listées dans la section 3.13.12, les mêmes actions peuvent être choisies lorsque l'erreur se produit. Les actions sont réglables individuellement pour chaque erreur et indépendamment des actions choisies pour d'autres erreurs.

Entrée	Description
Drain	L'actionneur est vidé en cas d'erreur
Fill	L'actionneur est rempli en cas d'erreur
Position	Définit la valeur de réglage adoptée sur le positionneur 8049-4 en cas d'erreur. Le réglage
	se fait via le sous-menu correspondant « Error pos ».
Inactive	Il n'est pas nécessaire d'effectuer une action spécifique en cas d'erreur (réglage par
	défaut)
- back -	Retour au menu IPC Param

Position en cas d'erreur :

Plage de valeurs	0.0% – 100.0%
Valeur par défaut	0.0 %

3.13.14 SW Version – Version de logiciel

Affichage de la version de logiciel du module d'extension IPC.

SW	SW version	
	1.01.00	
-	- back -	

3.14 Guidage par menus 8049-4

Le menu « Parameter » et les sous-menus correspondants permettent d'effectuer les réglages les plus importants pour le positionneur **de type 8049-4**.

Parameter	1
Sig range	
Working dir	
Safety pos	
Char curve	
Shut off	
Stroke lim	
Hysteresis	
- back -	

Entrée	Description
Sig range	Sous-menu permettant de régler la plage du signal d'entrée
Working dir	Sous-menu permettant de régler le sens d'action du signal d'entrée
Safety pos	Sous-menu permettant de régler la position de sécurité
Char curve	Sous-menu permettant de régler la courbe caractéristique
Shut off	Sous-menu permettant de régler la fonction de fermeture
Stroke lim	Sous-menu permettant de régler la limitation de course électronique
Hysteresis	Sous-menu permettant de régler la précision de l'hystérésis de régulation
- back -	Retour au menu « Menu main »

3.14.1 Sig range – Plage du signal d'entrée

S	ig	ra	ang	е	4	4
•	4	_	20	mA		
0	0	-	20	mΑ		
0	4	-	12	mΑ		
0	12	-	20	mΑ		
0	Vá	ar	iab	le		
	-	ba	ack	_		

Entrée*	Description
4-20 mA	La plage du signal de la valeur de consigne est de 4 – 20 mA
0-20 mA	La plage du signal de la valeur de consigne est de 0 – 20 mA
4-12 mA	La plage du signal de la valeur de consigne est de 4 – 12 mA (en cas de régulation par segments de plage)
12-20 mA	La plage du signal de la valeur de consigne est de 12 – 20 mA (en cas de régulation par segments de plage)
variable	Sous-menu permettant de régler à son gré une plage du signal de la valeur de consigne
- back -	Retour au menu Parameter

* En cas d'utilisation d'un signal de tension pour la définition de la valeur de consigne, cela est représenté en conséquence dans le menu (2 - 10 V / 0 - 10 V / 2 - 6 V / 6 - 10 V / variable)

3.14.1.1 Variable – Réglage variable de la plage du signal de positionnement

Entrée	Description
bottom	Sous-menu permettant de régler la limite inférieure du signal de la valeur de consigne
top	Sous-menu permettant de régler la limite supérieure du signal de la valeur de consigne
- back -	Retour au menu Sig range

Bottom :

Bottom	
Plage de valeurs	0.0 - Тор
Valeur par défaut	4.0

Top :

<u>10p</u> .	
Plage de valeurs	Bot – 20.0
Valeur par défaut	20.0

3.14.2 Work dir – Sens d'action du signal de positionnement

Work dir	8
•signal op	
o signal cl	
– back –	

Entrée	Description
signal op	Ouverture par signal croissant
signal cl	Fermeture par signal croissant
- back -	Retour au menu Parameter

3.14.3 Safety pos – Position de sécurité

Safety pos	9
• spring cl	
o spring op	
– back –	

Entrée	Description
spring cl	Position de sécurité : fermeture par ressort
spring op	Position de sécurité : ouverture par ressort
- back -	Retour au menu Param

3.14.4 Char curve – Courbe caractéristique de régulation

Menu permettant de choisir la courbe caractéristique de régulation.

Ce réglage doit être effectué lorsque le positionneur est monté sur une autre vanne. Le choix de la courbe caractéristique peut se faire à l'aide de la plaque signalétique de la vanne.

Char curve	10
•Seat valve	
o GS 15	
o GS 20-40	
o GS 50-80	
o GS 100-125	
oGS 150-250	
o SPV	
o KSV	
o variable	
- back -	

Entrée	Description
Seat valve	Courbe caractéristique standard pour les vannes à siège
GS 15	Courbe caractéristique standard pour les vannes à glissière de DN 15
GS 20-40	Courbe caractéristique standard pour les vannes à glissière de DN 20-40
GS 50-80	Courbe caractéristique standard pour les vannes à glissière de DN 50-80
GS 100-125	Courbe caractéristique standard pour les vannes à glissière de DN 100-125
GS 150-250	Courbe caractéristique standard pour les vannes à glissière de DN 150-250
SPV	Courbe caractéristique standard pour les vannes segment à disque
KSV	Courbe caractéristique standard pour les vannes à secteur sphérique
variable	Sous-menu permettant de régler à son gré la partie instantanée (électronique et
	mécanique, voir section 3.14.4)
- back -	Retour au menu Parameter

3.14.5 Lift load – Partie instantanée

La « partie instantanée » est une possibilité de parcourir rapidement une partie de la plage de course inférieure.

Avec les vannes à glissière, cette fonction est utilisée pour parcourir rapidement la zone de recouvrement et garantir un début de débit à 5 mA, indépendamment du diamètre nominal.

Par défaut, la partie instantanée est réglée à l'aide de la courbe caractéristique de régulation. Ce menu n'est nécessaire que pour les réglages spéciaux.

Entrée	Description
electrical	Sous-menu permettant de régler la valeur du signal de positionnement nécessaire, pour
	laquelle la course indiquée sous « mécanique » est atteinte
mechanical	Sous-menu permettant de régler la course atteinte pour la valeur du signal de positionnement indiquée sous « electrical »
- back -	Retour au menu Parameter

Electrical :

Lieundai .	
Plage de valeurs	0.0% - 100.0%
Valeur par défaut	0.0 %

Mechanical :

moonamoari	
Plage de valeurs	0.0% - 100.0%
Valeur par défaut	0.0 %

3.14.6 Shut off – Fonction de fermeture

La fonction de fermeture en haut provoque le remplissage complet de l'actionneur au-delà de ce signal de positionnement

La fonction de fermeture en bas provoque la purge complète de l'actionneur en dessous de ce signal de positionnement.

Shut off	14
• active o inactive	
- back -	

Entrée	Description
active	La fonction de fermeture est activée
	Réglage de la plage de fermeture inférieure et supérieure
inactive	La fonction de fermeture est désactivée
- back -	Retour au menu Parameter

3.14.6.1 Active

Entrée	Description
bottom	Sous-menu permettant de régler la plage de fermeture supérieure
top	Sous-menu permettant de régler la plage de fermeture inférieure
- back -	Retour au menu Shut off

Bottom :	
Plage de valeurs	0.0% – Top
Valeur par défaut	1.0 %

Top :

1001	
Plage de valeurs	Bot – 100.0%
Valeur par défaut	98.5 %

3.14.7 Stroke lim – Limitation de course

La limitation de course en haut permet de définir la valeur maximale de la courbe de régulation. La limitation de course en bas permet de définir la valeur minimale de la courbe de régulation.

Entrée	Description
bottom	Sous-menu permettant de régler la valeur inférieure de la limitation de course électronique
top	Sous-menu permettant de régler la valeur supérieure de la limitation de course électronique
- back -	Retour au menu Stroke Parameter

Limit bot :

Plage de valeurs	0.0% – Тор
Valeur par défaut	0.0 %

Limit top :

Plage de valeurs	Bot – 100.0%
Valeur par défaut	100 %

3.14.8 Hysteresis – Hystérésis de régulation

L'hystérésis de régulation indique la précision avec laquelle la valeur de consigne doit être réglée. Le régulateur s'arrête à l'intérieur d'une bande définie par la valeur réglée dans le sens positif et négatif autour de la valeur de consigne théorique. La valeur en pourcentage se rapporte à la course déterminée lors de l'équilibrage automatique.

Entrée	Description
0.2 %	Hystérésis de 0,2 %
0.4 %	Hystérésis de 0,4 %
0.6 %	Hystérésis de 0,6 %
variable	Sous-menu permettant de régler à son gré l'hystérésis
- back -	Retour au menu Parameter

Variable :

Tanabio I	
Plage de valeurs	0.1% - 2.0%
Valeur par défaut	0.4 %

3.15 Guidage par menus Généralités

3.15.1 **Info**

Le menu « Info » et les sous-menus correspondants présentent des informations sur l'équilibrage automatique, ainsi que le numéro de série, la version du logiciel et les heures de service du positionneur.

Info	21
Adaption	
Serial Nr	
SW Version	
Op hours	
– back –	

Entrée	Description
Adaption	Sous-menu contenant des informations sur l'équilibrage automatique
Serial Nr	Affichage du numéro de série de la platine principale du positionneur
SW Version	Affichage de la version de logiciel de la platine principale du positionneur
Op hours	Affichage des heures de service de la platine principale du positionneur
- back -	Retour au menu « Menu main »
3.15.1.1 Adaption – Valeurs de mesure de l'équilibrage automatique

Le menu « Adaption » contient toutes les informations importantes pour l'équilibrage automatique (voir section 3.18).

Entrée	Description
valvestroke	Affichage de la course de vanne
top	Affichage de la position du point de mesure supérieur (en % de l'ensemble de la plage
	possible de déplacement)
bottom	Affichage de la position du point de mesure inférieur (en % de l'ensemble de la plage
	possible de déplacement)
time fill	Affichage du temps de remplissage de l'actionneur
time drain	Affichage du temps de vidange de l'actionneur
counter	Affichage du nombre d'équilibrages automatiques effectués
- back -	Retour au menu Adaption

3.15.1.2 Serial Nr – Numéro de série de la platine principale

Affichage du numéro de série de la platine principale du positionneur.

Serial nr	29
S0800000	
90649832	
– back –	

3.15.1.3 SW Version – Version de logiciel

Affichage de la version de logiciel de la platine principale du positionneur.

SW version	30
01.03.0	
– back –	

3.15.1.4 Op hours – Heures de service

Affichage des heures de service de la platine principale du positionneur.

Op hours	31
6.	7h
- back	-

3.15.2 Error info

Le menu « Error info » et les sous-menus correspondants contiennent des informations détaillées sur les erreurs survenues. Une distinction est faite entre les classes d'erreur E01, E02 et E03 (voir également la section 3.20), les messages selon NAMUR (maintenance nécessaire, fonctionnement hors spécification, contrôle du fonctionnement), ainsi que les erreurs concernant l'IPC.

Le nombre d'informations d'erreurs disponibles est affiché, dans les sous-menus respectifs, les touches IN / OUT permettent de naviguer vers l'information d'erreur précédente / suivante, à la fin de chaque liste d'erreurs (identifiée par « - back - »), il est possible de revenir au menu Error info. La liste des erreurs est actualisée de manière cyclique ; s'il n'y a pas de message d'erreur, cela est également indiqué par un message.

Entrée	Description
E01	Informations sur toutes les erreurs de la classe d'erreur E01 du positionneur 8049-4
E02	Informations sur toutes les erreurs de la classe d'erreur E02 du positionneur 8049-4
E03	Informations sur toutes les erreurs de la classe d'erreur E03 du positionneur 8049-4
	Informations sur tous les états du positionneur 8049-4 nécessitant une maintenance
?	Informations lorsque le positionneur 8049-4 est utilisé en dehors de sa spécification
ß	Informations sur tous les états du positionneur 8049-4 nécessitant un contrôle du fonctionnement
IPC	Informations sur toutes les erreurs du régulateur de processus intégré (8049 IPC)
- back -	Retour au menu « Menu main »

3.15.3 Settings

Entrée	Description
Self adapt	Sous-menu permettant d'exécuter l'équilibrage automatique
Factory rst	Sous-menu permettant d'exécuter le reset d'usine
	protégé par un mot de passe (mot de passe par défaut : 1)
Change pass	Sous-menu permettant de modifier le mot de passe
Ada restore	Sous-menu permettant de restaurer le dernier équilibrage automatique valide
	Ce point de menu n'est affiché que si un équilibrage automatique a échoué et qu'il existe un équilibrage automatique antérieur valide.
- back -	Retour au menu « Menu main »

3.15.3.1 Self adapt – Lancement de l'équilibrage automatique

Menu permettant de lancer un équilibrage automatique. Celui-ci doit être confirmé une nouvelle fois (YES) après la sélection dans le menu *Settings*, l'écran affiche alors la progression de l'équilibrage automatique. Une fois le processus terminé, un retour au menu *Settings* est effectué.

Si le lancement de l'équilibrage automatique n'est pas confirmé (NO), le retour au menu Settings se fait automatiquement.

		95	5
Self	adapt		
NO			
YES			

3.15.3.2 Factory rst – Lancement du reset d'usine

Menu permettant d'effectuer un reset d'usine. Celui-ci doit être confirmé une nouvelle fois (YES) après la sélection dans le menu *Settings* et la saisie du mot de passe. Si le reset d'usine n'est pas confirmé (NO), le retour au menu *Settings* se fait automatiquement.

Le reset d'usine remet tous les réglages du positionneur 8049-4 et de l'IPC à leur état au moment de la livraison. Les valeurs par défaut des différents paramètres appliquées sont indiquées dans les chapitres correspondants du guidage par menus. Dans les menus où une sélection est effectuée, la sélection par défaut est marquée par le symbole •.

Les données de maintenance ne sont pas impactées par un reset d'usine et sont conservées.

3.15.3.3 Change pass

Menu permettant de modifier le mot de passe. Le mot de passe par défaut est « 1 » ; pour modifier le mot de passe, il faut tout d'abord saisir le mot de passe actuel, puis le nouveau mot de passe. Si le mot de passe actuel est mal saisi, le processus de modification du mot de passe est interrompu et il y a un retour au menu *Settings*.

Ce menu n'est affiché que si l'utilisation d'un mot de passe est activée dans le logiciel de configuration DeviceConfig (par défaut : activé).

3.15.3.4 Ada restore – Restauration du dernier équilibrage automatique valide

Menu permettant de restaurer le dernier équilibrage automatique valide après l'échec d'un équilibrage automatique. Ce menu n'est affiché que si, après un équilibrage automatique réussi, un nouvel équilibrage automatique a été effectué, mais n'a pas pu être achevé avec succès. La restauration du dernier équilibrage automatique valide doit être confirmée une nouvelle fois (YES) après la sélection dans le menu *Settings*. Si le processus n'est pas confirmé (NO), le retour au menu *Settings* se fait automatiquement.

		88	3
Ada	restore		
YES			
NO			

3.16 Autres modes de fonctionnement

Outre les fonctions standard (régulateur de processus intégré ou positionneur), il existe également d'autres modes de fonctionnement pour le 8049 IPC. Pour les utiliser (accès par les touches IN ou OUT), le 8049 IPC doit être alimenté en énergie électrique et raccordé à une alimentation en air comprimé.

3.16.1 Commande manuelle

Pour passer en mode manuel, le régulateur doit être « actif ». Pour cela, le régulateur doit être alimenté en énergie électrique et relié à de l'air comprimé.

Le passage en mode « commande manuelle » s'effectue en appuyant sur la touche « OUT » jusqu'à ce que la barre affichée ait entièrement défilé (environ 3 secondes).

En appuyant sur les touches « IN » (arrivée d'air dans l'actionneur) ou « OUT » (l'actionneur est purgé), la vanne est ouverte ou fermée. Si aucune touche n'est actionnée, le positionneur enferme l'air dans l'actionneur.

Pour désactiver la commande manuelle, il suffit d'appuyer brièvement et simultanément sur les touches IN et OUT. En fonction du mode IPC réglé (voir 3.13.5), la régulation s'effectue de nouveau avec la valeur de consigne prédéfinie (IPC on) ou avec la position de vanne prédéfinie (IPC off, LCD only).

Si les touches IN et OUT sont actionnées trop longtemps (plus de 2 à 3 secondes environ), le positionneur passe en mode ajustement.

Après un redémarrage, le positionneur se trouve toujours en mode automatique.

Étant donné qu'il n'y a pas de contrôle de position en mode commande manuelle, ce mode convient pour diagnostiquer une fuite importante du système. Pour ce faire, la vanne doit être déplacée avec la commande manuelle jusqu'à une ouverture d'environ 50 %. Puis, la vanne est observée pendant environ 10 minutes.

Comportement de la vanne	Cause possible	Élimination du défaut
La vanne se déplace dans la direction opposée à la position de sécurité (la pression dans l'actionneur augmente)	 Pression d'alimentation trop élevée Fuite interne 	 Réduire la pression d'alimentation Contacter le service de réparation et d'entretien
La vanne se déplace dans la direction de la position de sécurité (la pression dans l'actionneur diminue)	 Raccords vissés non étanches Joints usés dans le positionneur ou l'actionneur 	 Vérifier l'étanchéité des raccords vissés et les resserrer le cas échéant Contacter le service de réparation et d'entretien

Chaque positionneur possède une fuite interne. Cela entraîne un lent déplacement de la vanne en direction de la position de sécurité. Un processus de fermeture complet dure entre 30 minutes et plusieurs heures.

3.16.2 **Définition manuelle de la valeur de consigne**

Pour passer en mode « définition manuelle de la valeur de consigne », le régulateur doit être « actif ». Pour cela, le régulateur doit être alimenté en énergie électrique et relié à de l'air comprimé. Par ailleurs, il doit également y avoir un équilibrage automatique valide.

Le passage en mode « définition manuelle de la valeur de consigne » s'effectue en appuyant sur la touche « IN » jusqu'à ce que la barre affichée ait entièrement défilé (environ 3 secondes).

Lors de la définition manuelle de la valeur de consigne, l'ouverture de la vanne (entre 0 % et 100 % de la course totale) est définie par les deux touches IN et OUT. Un appui sur la touche IN augmente la valeur de consigne, un appui sur la touche OUT la diminue. Ce mode de fonctionnement est symbolisé sur l'affichage principal du 8049 IPC par l'affichage du signal de positionnement « Y » en lieu et place de la valeur de consigne « W ».

Pour désactiver la commande manuelle, il suffit d'appuyer brièvement et simultanément sur les touches IN et OUT. En fonction du mode IPC réglé (voir 3.13.5), la régulation s'effectue de nouveau avec la valeur de consigne prédéfinie (IPC on) ou avec la position de vanne prédéfinie (IPC off, LCD only).

3.17 Alarmes de l'IPC

Le menu *IPC Param* → *Alarm* permet d'activer et de désactiver la fonction Alarme du régulateur 8049 IPC et de définir le type d'alarme. Selon le choix du type d'alarme, différents paramètres sont utilisés pour définir l'alarme. Le tableau ci-dessous décrit les paramètres utilisés, ainsi que les valeurs de déclenchement et de retrait de chaque alarme. L'illustration qui suit offre également un aperçu général du processus.

Type d'alarme	Seuil de déclenchement	Seuil de retrait
Band	Seuil inférieur :	Seuil inférieur :
	Valeur de consigne – Setpt rel – Hystérésis	Valeur de consigne – Setpt rel + Hystérésis
	-	Seuil supérieur :
	Seuil supérieur :	Valeur de consigne + Setpt rel – Hystérésis
	Valeur de consigne + Setpt rel + Hystérésis	
Rel low	Valeur de consigne – Setpt rel – Hystérésis	Valeur de consigne – Setpt rel + Hystérésis
Rel high	Valeur de consigne + Setpt	Valeur de consigne + Setpt rel – Hystérésis
	rel + Hystérésis	
Abs low	Setpt abs – Hystérésis	Setpt abs + Hystérésis
Abs high	Setpt abs + Hystérésis	Setpt abs – Hystérésis

Une alarme de l'IPC peut être affichée via la sortie d'alarme de la platine principale (réglable avec le logiciel DeviceConfig)

3.18 Adaptation automatique

L'ajustement (équilibrage automatique) du positionneur monté est effectué en usine. Normalement, il n'est nécessaire qu'après un remplacement ou, le cas échéant, une réparation de la vanne.

Lorsqu'un nouveau positionneur a été monté sur la vanne ou qu'un ancien positionneur y a été remplacé, celui-ci doit être ajusté. Il existe deux possibilités pour lancer l'équilibrage automatique, le régulateur devant toujours être alimenté en énergie électrique et approvisionné en air comprimé :

Lancement de l'équilibrage automatique via les boutons de la platine principale

Appuyer sur les deux touches « IN » et « OUT » de la platine principale du positionneur (2 à 3 secondes)

Lancement de l'équilibrage automatique via le menu Settings

- Sélectionner le point de menu Self adapt dans le menu Settings (voir section 3.15.3.1)

La vanne s'ouvre et se ferme plusieurs fois. Pendant l'équilibrage automatique, le positionneur passe par différents modes :

- « WAY OUT » L'actionneur est purgé
- « WAY IN » L'actionneur est rempli
- « SPEED » La vitesse de l'actionneur est mesurée
- « OVERSHOOT » La dynamique de l'actionneur est déterminée

Une fois l'ajustement achevé, si l'équilibrage a été fait sans erreur, le régulateur repasse automatiquement en mode régulation (lancement via les touches IN et OUT de la platine principale) ou retourne au menu *Settings* (lancement via le point de menu *Self adapt*).

L'équilibrage automatique ne peut pas être lancé via les touches « IN » et « OUT » du clavier à effleurement.

3.18.1 **Restauration du dernier équilibrage automatique valide**

Si le positionneur a déjà été équilibré avec succès et qu'un nouvel équilibrage automatique ne peut être achevé correctement, les valeurs du dernier équilibrage automatique réussi peuvent être restaurées. Il faut sélectionner pour cela le point de menu *Menu settings -> Ada restore*. Ce point de menu n'est affiché que si les conditions pour la restauration du dernier équilibrage automatique valide sont réunies (voir également la section 3.15.3.4).

3.19 **Configuration avec le logiciel sur PC DeviceConfig**

En plus du réglage de l'ensemble des paramètres du régulateur 8049 IPC et des principaux paramètres du positionneur 8049-4 via le menu, ceux-ci peuvent également être réglés via une interface PC et le logiciel de configuration « DeviceConfig ».

Cela <u>n'est pas</u> nécessaire pour la mise en service et le fonctionnement du régulateur 8049 IPC, ni pour son ajustement après un éventuel remplacement, dès lors qu'aucun réglage local spécial n'a été enregistré.

3.20 Messages d'erreurs

Le régulateur 8049 IPC et le positionneur 8049-4 affichent des messages d'erreurs à l'écran. Le menu *Error info* (voir section 3.15.2) contient des informations plus détaillées sur les messages d'erreurs, et les messages sont présentés de manière conforme à la norme NAMUR NE107.

Étant donné qu'un seul message d'erreur peut être affiché à l'écran, la présentation se fait par ordre de priorité (décroissante), conformément au tableau ci-dessous :

Code	Source d'erreur	Signification
NO ADAPTION Scode:90	8049-4 Régulateur non équilibré	Effectuer l'équilibrage
NO ADAPTION EO1	8049-4 Régulateur non équilibré	Pendant l'équilibrage automatique, la détermination de la course a échoué. Remède possible : – Vérifier la pression de l'arrivée d'air – Vérifier si la tige de détection est bien enclenchée
NO ADAPTION E01 Code:92	8049-4 Régulateur non équilibré	 Pendant l'équilibrage automatique, aucune position stable n'a pu être atteinte. Remède possible : Vérifier l'étanchéité du raccordement d'air comprimé à l'actionneur Vérifier les vis sans tête permettant le montage du régulateur
NO ADAPTION E01 Code:93	8049-4 Régulateur non équilibré	La course actuellement mesurée se trouve en dehors de la plage de course du dernier équilibrage automatique. Remède possible : - Vérifier si la tige de détection est bien enclenchée - Vérifier les vis sans tête permettant le montage du régulateur - Effectuer l'équilibrage
NO ADAPTION SE01 Code:94	8049-4 Régulateur non équilibré	L'équilibrage a échoué, les valeurs du dernier équilibrage automatique valide ont été chargées (via le menu Settings → « Ada restore », voir section 3.15.3.4)
SENSOR MAX Setpoint:00.0%	8049 IPC	La valeur est au-dessus de la valeur réelle max.
SENSOR MIN Setpoint:00.0%	8049 IPC	La valeur est en dessous de la valeur réelle min.

Code	Source d'erreur	Signification
SETPT MAX E12 Setpoint:00.0%	8049 IPC	La valeur est au-dessus de la valeur de consigne max.
SETPT MIN Setpoint:00.0%	8049 IPC	La valeur est en dessous de la valeur de consigne min.
TIMEOUT IPC Setpoint:00.0%	8049 IPC	La communication avec le module d'extension IPC est interrompue Remède possible : – Vérifier si le câble de raccordement est correctement branché sur le module d'extension et sur la platine principale
NO SIGNAL Setpoint:00.0%	8049-4 Erreur sur le signal de la valeur de consigne	Le signal de positionnement se trouve en dehors de la plage valable Cette erreur n'est diagnostiquée que si l'IPC est en mode « IPC OFF » ou « LCD only ».
CONTROL ERR E03 Setpoint: 00.0%	8049-4 Erreur de régulation	La vanne n'atteint pas sa position de consigne

Le logiciel « DeviceConfig » permet de définir les états de fonctionnement et les messages d'erreurs devant être émis par la sortie de signalement des défauts collective. Par défaut, seule « l'erreur de régulation » est émise.

3.21 Élimination des défauts

Erreur / Symptôme	Cause(s) possible(s)	Procédure à suivre
L'actionneur ne se déplace pas	 La pression de commande est trop faible 	 Augmenter la pression de commande à 4 – 6 bars.
L'actionneur ne va pas jusqu'à la butée (à 20 mA)	 La pression de commande est trop faible Le régulateur n'est pas correctement équilibré 	Augmenter la pression de commande.Effectuer l'équilibrage
En mode automatique stationnaire (valeur de consigne constante), les électrovannes commutent en permanence.*	 Fuite dans la liaison entre le positionneur et l'actionneur. Fuite dans l'actionneur 	 Rechercher la fuite et la supprimer. Changer les joints de l'actionneur.
Les électrovannes ne commutent pas.	 Électrovannes mal connectées Saleté (copeaux, particules) présente dans les électrovannes 	 Vérifier la connexion des électrovannes. Remplacer les électrovannes.

Erreur / Symptôme	Cause(s) possible(s)	Procédure à suivre
La vanne ne s'ouvre pas.	 La tige de détection est desserrée. 	 Vérifier le bon positionnement de la tige de détection
Le régulateur ne fonctionne pas.	 La polarité du signal de positionnement est inversée. 	 Vérifier la polarité du signal de positionnement
Les différentes positions de la vanne ne sont pas atteintes correctement.	 Le régulateur n'est pas correctement équilibré. 	 Effectuer l'équilibrage automatique.
Le régulateur ne réagit pas au signal de positionnement.	 Le régulateur est en mode manuel 	 Passer en mode automatique en appuyant sur les deux touches (IN et OUT).

* Applicable lorsque l'IPC mode est mis sur OFF. Lorsque l'IPC mode est mis sur ON, une grandeur de processus est réglée à une valeur de consigne prédéfinie. Des conditions ambiantes en constante évolution (grandeurs perturbatrices) entraînent la commutation des électrovannes afin de maintenir la grandeur de processus à la valeur prédéfinie.

3.22 **Réglage des paramètres de régulation**

Différentes méthodes sont disponibles pour définir les paramètres de régulation. Voici un bref aperçu des plus importantes.

3.22.1 **Réglage empirique**

Cette méthode convient au réglage de systèmes simples, en particulier lorsque l'on dispose déjà d'expériences avec des circuits de régulation similaires.

En commençant par un réglage non critique (Kp faible, par exemple 1.1, Tn = INACTIVE et Td = INACTIVE), le gain Kp est augmenté lentement jusqu'à ce que le circuit de régulation commence à osciller. Dès qu'une tendance à l'oscillation apparaît, le gain doit de nouveau être légèrement réduit.

Ensuite, la part intégrale est activée (Tn = ACTIVE) et Tn est diminué jusqu'à ce qu'un résultat satisfaisant soit atteint. En cas de besoin, il est possible d'ajouter également une part différentielle (Td = ACTIVE), où Td est augmenté lentement. Si le circuit de régulation devient plus stable, Kp peut être augmenté ou Tn diminué, jusqu'à ce qu'un comportement de régulation acceptable soit atteint.

Une optimisation de la régulation sans connaissance précise du système de régulation n'est possible que dans une mesure limitée, mais l'évolution de la valeur réelle permet d'obtenir un certain nombre d'améliorations dans le comportement de régulation :

La valeur réelle ne s'approche que lentement de la valeur de consigne et avec de légères oscillations.	Augmenter le gain Kp. Si cela conduit à une amélioration, réduire ensuite le temps de dérivée Td. Répéter cette opération jusqu'à ce que le résultat de la régulation soit satisfaisant.
La valeur réelle s'approche de la valeur de consigne sans suroscillation importante.	Comportement optimal du régulateur pour les processus ne tolérant pas de suroscillations.
La valeur réelle s'approche de la valeur de consigne avec une légère suroscillation amortie.	Comportement optimal du régulateur pour une régulation rapide et pour l'élimination des composantes perturbatrices. La première suroscillation ne doit pas dépasser 10 % du saut de la valeur de consigne.
La valeur réelle s'approche rapidement de la valeur de consigne, mais avec une suroscillation bien supérieure à cette dernière. Les oscillations sont amorties et donc encore stables	Réduire le gain Kp. Si cela conduit à une amélioration, augmenter ensuite le temps de dérivée Td. Répéter cette opération jusqu'à ce que le résultat de la régulation soit satisfaisant.

3.22.2 Méthode selon Ziegler-Nichols

Dans la méthode des oscillations selon Ziegler / Nichols, les paramètres du régulateur sont ajustés de manière à ce que la limite de stabilité soit atteinte et que la grandeur de réglage exécute des oscillations périodiques, c'est-à-dire que le circuit de régulation commence à osciller. Les paramètres du régulateur peuvent être définis à partir du réglage ainsi trouvé.

Cette méthode n'est applicable qu'aux systèmes de régulation, pour lesquels une oscillation ne cause aucun dommage, et aux circuits de régulation supportant une instabilité.

La procédure à suivre est la suivante :

- Le régulateur est configuré comme un régulateur uniquement P (Tn = INACTIVE, Td = INACTIVE)
- Le gain Kp est augmenté jusqu'à ce que le circuit de régulation fermé exécute des oscillations continues (état critique)
- La valeur Kp ainsi réglée est appelée Kpkrit
- La durée de la période T_{krit} de l'oscillation continue qui apparaît est mesurée (en secondes)

• Pour finir, les paramètres de régulation sont définis à l'aide du tableau ci-dessous

Type de	Gain	Temps d'intégrale	Temps de dérivée
régulateur	Кр	Tn	Td
Р	0,50 Kp _{krit}	OFF	OFF
PI	0,45 Kp _{krit}	0,85 T _{krit}	OFF
PID	0,60 Kp _{krit}	0,5 T _{krit}	0,12 T _{krit}

3.22.3 Méthode selon Chien, Hrones et Reswick

Sur les circuits de régulations réels, il peut être dangereux ou impossible de générer une oscillation pour définir les valeurs de réglage selon la méthode de Ziegler-Nichols. Dans ce cas et pour les systèmes à grand retardement, la méthode de Chien-Hrones-Reswick est plus adaptée.

Celle-ci se base sur la réponse à un échelon du système de régulation et sur les valeurs du gain Ks, du temps de retard T_u et du temps de compensation T_g qui en découlent. Cette méthode ne doit être utilisée que si la condition suivante est remplie :

La procédure à suivre est la suivante :

- Un échelon de la grandeur de réglage ∆y est appliqué sur la vanne (voir section 3.22.5)
- La modification de la valeur réelle ∆x qui en résulte est enregistrée

- Calcul du gain Ks = $\Delta x / \Delta y$
- Sur la courbe de variation de la valeur réelle enregistrée, tracer une tangente au point d'inflexion de la courbe et relever le temps de retard T_u et le temps de compensation T_g.
- Selon les exigences, les valeurs de réglage recommandées pour assurer un bon comportement en régulation (valeur de consigne constante, conditions limites changeantes) ou un comportement en asservissement (valeur de consigne changeante, conditions limites constantes) sont définies comme suit :

		Sans suroscillation		Avec suroscillation d'env. 20 %	
Type de "" régulateur		Comportement en régulation	Comportement en asservissement	Comportement en régulation	Comportement en asservissement
	Кр	0,3 Tg/(Tu*Ks)	0,3 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)
Р	Tn	OFF	OFF	OFF	OFF
	Td	OFF	OFF	OFF	OFF
	Кр	0,6 Tg/(Tu*Ks)	0,35 Tg/(Tu*Ks)	0,7 Tg/(Tu*Ks)	0,6 Tg/(Tu*Ks)
PI	Tn	4 Tu	1,2 Tg	2,3 Tu	1 Tg
	Td	OFF	OFF	OFF	OFF
	Кр	0,95 Tg/(Tu*Ks)	0,6 Tg/(Tu*Ks)	1,2 Tg/(Tu*Ks)	0,95 Tg/(Tu*Ks)
PID	Tn	2,4 Tu	1 Tg	2 Tu	1,35 Tg
	Td	0,42 Tu	0,5 Tu	0,42 Tu	0,47 Tu

3.22.4 Règle du total T selon Kuhn

La règle du total T peut être appliquée si le temps de retard T_u est très faible ou pas du tout détectable, ou si le rapport entre le temps de compensation T_g et T_u ne permet pas une détermination selon la méthode Chien, Hrones et Reswick (à cause de T_g < 3^*T_u)

La procédure à suivre est la suivante :

- Un échelon de la grandeur de réglage ∆y est appliqué sur la vanne (voir section 3.22.5)
- La modification de la valeur réelle ∆x qui en résulte est enregistrée
- Calcul du gain Ks = $\Delta x / \Delta y$
- La ligne verticale est déplacée jusqu'à ce que les deux surfaces F1 et F2 soient égales (une bonne estimation suffit)

- Relever la constante de temps totalisée Τ_Σ
- Les paramètres de régulation peuvent être définis en fonction du comportement de régulation visé à l'aide des tableaux ci-dessous :

Réglage par défaut :

Type de	Gain	Temps d'intégrale	Temps de dérivée
régulateur	Кр	Tn	Td
Р	1/Ks	OFF	OFF
PI	0,5/Ks	0,5* Τ Σ	OFF
PID	1/Ks	0,66* Τ Σ	0,167* Τ Σ

Régulation rapide :

Type de	Gain	Temps d'intégrale	Temps de dérivée
régulateur	Кр	Tn	Td
PI	1/Ks	0,7* Τ Σ	OFF
PID	2/Ks	0,8* Τ Σ	0,194* Τ Σ

3.22.5 Détermination du gain du circuit K_s

Le gain du circuit K_s indique comment le système de régulation réagit à une modification de la grandeur de réglage (la position de la vanne montée pour le régulateur de type 8049 IPC).

La détermination du facteur K_s est traitée la plupart du temps de façon très théorique dans la littérature spécialisée ; c'est pourquoi elle est expliquée ici plus en détail à l'aide de l'exemple d'une régulation de température (en tenant compte des unités). Le menu permettant de régler la fonction échelon est décrit dans la section 3.13.7.

Exemple : régulation de température

- Saisir la valeur de réglage de la position inférieure (*Position 1*) (par exemple, 40 %)
- Saisir la valeur de réglage de la position supérieure (*Position 2*) (par exemple, 60 %)

Pour déterminer les paramètres de régulation optimaux, le signal échelon doit se situer dans la zone du point de fonctionnement à attendre du régulateur.

• Le menu Step permet de passer d'une position à l'autre. La modification de la valeur réelle doit être enregistrée à l'aide d'un instrument de mesure approprié

Cet exemple donne les résultats suivants :

Avant le signal échelon	Après le signal échelon	Modification
Position $1 = 40 \%$	Position $2 = 60 \%$	Échelon de 20 %
X1 = 30 °C	X2 = 60 °C	Hausse de température de 30 °C

Le gain du circuit K_s peut ainsi être déterminé à partir du gain en pourcentage K_% :

$$K_{\%} = \Delta x / \Delta y$$

$$K_{\%} = (60 \ ^{\circ}\text{C} - 30 \ ^{\circ}\text{C}) / (60 \ \% - 40 \ \%)$$

$$K_{\%} = 30 \ ^{\circ}\text{C} / 20 \ \%$$

$$K_{\%} = 1,5 \ ^{\circ}\text{C} / \%$$

Une modification de l'ouverture de la vanne de 1 % entraîne donc une augmentation attendue de la température de 1,5 °C.

Cette valeur montre également que le gain du circuit est lié à l'unité de mesure. Il est donc également important de régler correctement la plage de mesure de la valeur réelle dans l'unité adéquate.

Comme K_s se rapporte à une modification de la valeur de réglage de 100 %, il faut encore multiplier cette valeur par 100 :

$$K_s = K_{\%} * 100 = 1,5 \text{ °C} / \% * 100 \% = 150$$

Cette valeur (150) permet de déterminer les paramètres de régulation Kp, Tn et Td suivant les procédés indiqués.

3.23 Montage pour les actionneurs linéaires

3.23.1 Montage du kit de montage

Le kit de montage est fixé sur la partie supérieure de l'actionneur de la vanne. Selon le type de vanne, la fixation peut être différente.

Le couplage du positionneur à la vanne s'effectue par le biais d'une butée mécanique, qui doit être prévue côté vanne et qui doit être reliée à la tige de vanne. La tige de détection de retour avec ressort de rappel, qui transmet la position de la vanne au régulateur, repose sur la surface plane de la butée.

La butée doit être réglée de manière à atteindre la cote « X », mesurée entre le bord supérieur de la bague d'adaptation et la surface d'appui, lorsque la vanne n'est pas sous pression (voir ci-dessous). Après le réglage, elle doit être maintenue par blocage ou collage.

Remarque : selon la structure de l'actionneur, il est possible qu'aucun affichage visuel ne soit nécessaire (par exemple, pour les actionneurs à membrane avec structure en colonne). Dans ce cas, seule la bague d'adaptation est fixée directement sur l'actionneur de la vanne ; la cote de réglage « X » reste cependant la même, c'est-à-dire que la tige de détection entre dans l'actionneur.

La cote « X » n'est pas constante, mais dépend de la course de vanne :

3.23.2 Montage du positionneur

- Placer le positionneur, avec la tige de détection et le ressort de rappel, sur le kit de montage.
- Serrer les 3 vis sans tête sur le côté de la bague de fixation.
- Relier la sortie « Y1 » à l'actionneur de vanne.

Veillez à ce que cette connexion soit bien étanche, car cela entraîne sinon un fonctionnement permanent des électrovannes du positionneur.

- Rebrancher l'arrivée d'air (raccord « P »).
- Ouvrir le couvercle du positionneur et rebrancher les connexions électriques.
- Procéder à l'ajustement du positionneur.
- Fermer le couvercle du positionneur.

Procéder au démontage du positionneur de la même façon, en procédant en sens inverse.

3.24 Montage pour les actionneurs pivotants

Le positionneur numérique pour actionneurs pivotants est conçu pour être monté sur des actionneurs pivotants avec un kit de montage, conformément à la norme VDI / VDE 3835.

Pour les actionneurs à double effet :

- 3. Amener la vanne en position « fermée ».
- 4. Faire tourner l'accouplement (1) jusqu'à ce que l'indicateur d'angle de rotation (2) soit sur 0°.

Pour les actionneurs à simple effet avec « fermeture par ressort » :

- 3. <u>Ne pas</u> alimenter l'actionneur en air comprimé.
- 4. Faire tourner l'accouplement (1) jusqu'à ce que l'indicateur d'angle de rotation (2) soit sur 0°.

Pour les actionneurs à simple effet avec « ouverture par ressort » :

- 11. <u>Ne pas</u> alimenter l'actionneur en air comprimé.
- 12. Faire tourner l'accouplement (1) jusqu'à ce que l'indicateur d'angle de rotation (2) soit sur 90°.

- 13. Placer le positionneur sur la console du kit de montage. L'accouplement doit s'enclencher dans la rainure de l'actionneur (A).
- 14. Fixer le positionneur sur la console à l'aide des vis (4) et des rondelles (5).
- 15. Ne jamais desserrer les vis sans tête de l'accouplement (1) et de la bague (2) !
- 16. Établir des liaisons pneumatiques entre le positionneur et l'actionneur.
 - Pour les actionneurs à simple effet : sortie Y1
 - Pour les actionneurs à double effet : sorties Y1 et Y2

Veillez à ce que cette connexion soit bien étanche, car cela entraîne sinon un fonctionnement permanent des électrovannes du positionneur.

- 17. Ouvrir le couvercle du positionneur et rebrancher les connexions électriques.
- 18. Rebrancher l'arrivée d'air (raccord « P »).
- 19. Procéder à l'ajustement du positionneur.
- 20. Fermer le couvercle du positionneur.

Procéder au démontage du positionneur de la même façon, en procédant en sens inverse.

3.25 Maintenance et entretien

L'appareil ne nécessite aucune maintenance.

À l'arrière de la partie inférieure du boîtier métallique se trouve une cartouche filtrante, qui peut être dévissée et nettoyée ou remplacée en cas de besoin.

Les prescriptions en termes de maintenance des éventuels postes de réduction d'arrivée d'air placés en amont doivent être respectées.

3.26 Élimination

L'appareil et son emballage doivent être éliminés conformément aux lois et réglementations en vigueur dans le pays concerné.

3.27 **Dimensions et poids**

Poids d'env. 1 kg

Original Schubert & Salzer Produkte werden ausgeliefert über: Original Schubert & Salzer products are delivered by: Les produits originaux Schubert & Salzer sont livrés par:

Schubert & Salzer Control Systems GmbH

Bunsenstraße 38 85053 Ingolstadt Germany

Tel. +49 / 841 / 96 54 - 0 Fax +49 / 841 / 96 54 - 5 90 info.cs@schubert-salzer.com www.schubert-salzer.com

Schubert & Salzer UK Ltd.

140 New Road Aston Fields, Bromsgrove Worcestershire B60 2LE United Kingdom

Tel. +44 / 19 52 / 46 20 21 Fax +44 / 19 52 / 46 32 75 info@schubert-salzer.co.uk www.schubert-salzer.com

Schubert & Salzer Benelux BV/SRL

Poortakkerstraat 91/201 9051 Gent Belgium Tel. Belgium +32 / 9 / 334 54 62 Fax Belgium +32 / 9 / 334 54 63 info.benelux@schubert-salzer.com www.schubert-salzer.com

Schubert & Salzer Inc.

4601 Corporate Drive NW Concord, N.C. 28027 United States of America

Tel. +1 / 704 / 789 - 0169 Fax +1 / 704 / 792 - 9783 info@schubertsalzerinc.com www.schubertsalzerinc.com

Schubert & Salzer France Sarl

950 route des Colles CS 30505 06410 Sophia Antipolis France

Tel. +33 / 492 94 48 41 Fax +33 / 493 95 52 58 info.fr@schubert-salzer.com www.schubert-salzer.com

Schubert & Salzer India Private Limited

Senapati Bapat Marg. Upper Worli Opp. Lodha World Tower Lower Parel (W) Mumbai 400 013 India

info.india@schubert-salzer.com www.schubert-salzer.com